Patent application title: CELL LINES AND HOST NUCLEIC ACID SEQUENCES RELATED TO INFECTIOUS DISEASE
Inventors:
Thomas W. Hodge (Roswell, GA, US)
Natalie J. Mcdonald (Atlanta, GA, US)
Michael W. Shaw (Decatur, GA, US)
Donald H. Rubin (Nashville, TN, US)
Anthony Sanchez (Lilburn, GA, US)
Assignees:
The Government of the United States of America as represented by the Secretary of Health and
HUMAN SERVICES
Vanderbilt University
IPC8 Class: AA61K39395FI
USPC Class:
4241581
Class name: Drug, bio-affecting and body treating compositions immunoglobulin, antiserum, antibody, or antibody fragment, except conjugate or complex of the same with nonimmunoglobulin material binds hormone or other secreted growth regulatory factor, differentiation factor, or intercellular mediator (e.g., cytokine, vascular permeability factor, etc.); or binds serum protein, plasma protein, fibrin, or enzyme
Publication date: 2011-08-04
Patent application number: 20110189193
Abstract:
Host nucleic acids and host proteins that participate in viral infection,
such as human immunodeficiency virus (HIV), influenza A, and Ebola virus,
have been identified. Interfering with or disrupting the interaction
between a host nucleic acid or host protein and a virus or viral protein
confers an inhibition of or resistance to infection. Thus, interfering
with such an interaction in a host subject can confer a therapeutic or
prophylactic effect against a virus. The sequences identified can be used
to identify agents that reduce or inhibit viral infection.Claims:
1. A method of decreasing infection of a host cell by a virus, comprising
interfering with an activity or expression of one or more host proteins
or interfering with an activity of one or more host nucleic acids,
wherein the host protein or host nucleic acid is a T-cell receptor V beta
chain; T-cell receptor V-D-J beta 2.1 chain; β-chimerin; malic
enzyme 1; hypothetical protein XP--174419; sequence from chromosome
4q31.3-32; alpha satellite DNA; LOC253788; LOC219938; coagulation factor
III (F3); LOC91759; similar to KOX4 (LOC131880); LOC166140; LOC222474;
similar to Rho guanine nucleotide exchange factor 4, isoform a;
APC-stimulated guanine nucleotide exchange factor (LOC221178); T-cell
receptor beta; ribosomal protein L7A-like 4; v-src sarcoma
(Schmidt-Ruppin A-2) viral oncogene homolog (avian) (SRC); KIAA0564;
alpha satellite DNA; M96 protein; hypothetical protein similar to G
proteins (L0057826); LOC161005; osteoblast specific factor 2; Canis
familiaris T-cell leukemia translocation-associated protein;
aminomethyltransferase; dystroglycan; bassoon; LIM domain containing
preferred translocation partner in lipoma; sequence between LOC253121 and
hyaluronan synthase 2; testin 2, testin 3; protein tyrosine phosphatase,
non-receptor type 1; sequence between LOC149360 and LOC253961; sequence
between KIAA1560 and tectorin beta; cadherin related 23; myeloid/lymphoma
or mixed lineage leukemia, translocated to 10; exportin 5; DNA polymerase
eta (POLH); heterogenous nuclear riboprotein C(C1/C2); alpha-endosulfine
pseudogene; LOC128741; LOC222888; LOC138421; zinc finger protein 297B;
sideroflexin 5; importin 9 (FLJ10402); T-cell receptor beta; similar to
murine putative transcription factor ZNF131 (LOC135952); KIAA1259; MURR1;
CCT4; FLJ40773; similar to ribosomal protein L24-like (LOC149360);
polybromo 1; DNA damage inducible transcript 3; KIAA1887; PDZ ; LIM
domain 1 (elfin); LOC284803; PRO0097; FLJ31958; small inducible cytokine
E, member 1 (endothelial monocyte-activating); E3 ubiquitin ligase
(SMURF2); MGC40489; retinoblastoma binding protein 1; region of
chromosome 2q12; elongation factor for selenoprotein translation;
Transcription factor SMIF (HSA275986); KIAA1026; trinucleotide repeat
containing 5 (TNRC5); homogentisate 1,2-dioxygenase (HGD); region of
chromosome Xq23-24; region of chromosome 4p15.3; similar to LWamide
neuropeptide precursor protein [Hydractinia echinata] (LOC129883); region
of chromosome 2q21; region of chromosome Xp11.4, including UPS9X;
LOC221829; U3 small nuclear RNA; integrin, beta 1 (ITGB1); acrosomal
vesicle protein 1 (ACRV1) and CHK1 checkpoint homolog (CHEK1);
prospero-related homeobox 1 (PROX1); FLJ20627 and FLJ12910;
PIN2-interacting protein (PINX1) and SRY (sex-determining region Y)-box 7
(SOX7); LOC131920; region of chromosome 13q14; neurotrophic tyrosine
kinase, receptor, type 3 (NTRK3); TERA protein and FLJ13224; LOC284260;
POM (POM121 homolog) and ZP3 fusion (POMZP3); DEAD/H box polypeptide 8
(DDX8) and similar to ribosomal protein L29 (cell surface heparin binding
protein HIP) (LOC284064); LOC345307 and
UDP-N-acetyl-D-galactosamine:polypeptide
N-acetylgalactosaminyltransferase 7 (GALNT7); Mus musculus 5S rRNA
pseudogene (Rn5s-ps1); ribosomal protein L27a pseudogene (RPL27AP) and
v-myb myeloblastosis viral oncogene homolog-like 2 (MYBL2); Down's
syndrome cell adhesion molecule like 1 (DSCAML1); LOC148529;
Huntington-associated protein interacting protein (HAPIP); LOC158525 and
similar to RIKEN cDNA 1210001E11 (LOC347366); hypothetical protein
FLJ12910; LOC350411; allograft inflammatory factor 1 (AIF1) and HLA-B
associated transcript 2 (BAT2); C10orf7; LOC346658 and LOC340349; region
of chromosome 12q21; LOC339248 and FLJ22659; SR rich protein
DKFZp564B0769 and hypothetical protein MGC14793; FLJ10439; cytochrome
P450, family 11, subfamily A, polypeptide 1 (CYP11A1) and sema domain,
immunoglobulin domain (Ig) and GPI membrane anchor, (semaphoring) 7A;
ribosomal protein S16 (RPS16); hypothetical protein DKFZp434H0115 and ATP
citrate lyase (ACLY); calnexin (CANX); protein tyrosine phosphatase,
receptor type, K (PTPRK); cyclin M2 (CNNM2); or AXL receptor tyrosine
kinase (AXL), and wherein interfering with the activity or expression of
the one or more host proteins decreases infection of the host cell by the
virus.
2. The method of claim 1, wherein the one or more host proteins is encoded by one or more host nucleic acids comprising at least 90% identity to any target nucleic acid sequence associated with SEQ ID NOS: 1-117, 120-227, 229 or 231.
3. The method of claim 2, wherein the one or more host nucleic acids comprises any target nucleic acid sequence associated with SEQ ID NOS: 1-117, 120-227, 229 or 231.
4. The method of claim 1, wherein the method comprises interfering with an activity or expression of more than three host proteins.
5. The method of claim 1, wherein the virus is HIV-1 or HIV-2, and the host protein or host nucleic acid is a T-cell receptor V beta chain; T-cell receptor V-D-J beta 2.1 chain; β-chimerin; malic enzyme 1; hypothetical protein XP--174419; sequence from chromosome 4q31.3-32; alpha satellite DNA; LOC253788; LOC219938; coagulation factor III; LOC91759; similar to KOX4 (LOC131880); LOC166140; LOC222474; similar to Rho guanine nucleotide exchange factor 4, isoform a; APC-stimulated guanine nucleotide exchange factor (LOC221178); T-cell receptor beta; ribosomal protein L7A-like 4 (RPL7AL4); v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) (SRC); KIAA0564; alpha satellite DNA; M96 protein; hypothetical protein similar to G proteins; RAP-2A (L0057826); LOC161005; or osteoblast specific factor 2.
6. The method of claim 1, wherein the virus is influenza A, and the host protein is a Canis familiaris T-cell leukemia translocation-associated protein, aminomethyltransferase; dystroglycan; bassoon; LIM domain containing preferred translocation partner in lipoma; sequence between LOC253121 and hyaluronan synthase 2; testin 2; testin 3; PTPN1 gene for protein tyrosine phosphatase, non-receptor type 1; sequence between LOC149360 and LOC253961; sequence between KIAA1560 and tectorin beta; cadherin related 23; malic enzyme 1; hypothetical protein XP--174419; sequence from chromosome 4q31.3-32; or a myeloid/lymphoma or mixed lineage leukemia, translocated to 10.
7. The method of claim 1, wherein the virus is Ebola, and the host protein is a exportin 5; DNA polymerase eta (POLH); heterogenous nuclear riboprotein C; alpha-endosulfine pseudogene; LOC128741; LOC222888; LOC138421; zinc finger protein 297B; sideroflexin 5; importin 9 (FLJ10402); T-cell receptor beta; similar to murine putative transcription factor ZNF131 (LOC135952); KIAA1259; MURR1; CCT4; FLJ40773; ribosomal protein L24-like (LOC149360); testin 2; testin 3; polybromo 1; DNA damage inducible transcript 3; KIAA1887; PDZ; LIM domain 1 (elfin); LOC284803; PRO0097; FLJ31958; small inducible cytokine E, member 1 (endothelial monocyte-activating); E3 ubiquitin ligase; MGC40489; PRO1617; retinoblastoma binding protein 1; region of chromosome 2q12; elongation factor for selenoprotein translation; Transcription factor SMIF (HSA275986); KIAA1026; trinucleotide repeat containing 5 (TNRC5); homogentisate 1,2-dioxygenase (HGD); region of chromosome Xq23-24; region of chromosome 4p15.3; similar to LWamide neuropeptide precursor protein [Hydractinia echinata] (LOC129883); region of chromosome 2q21; region of chromosome Xp11.4, including UPS9X; LOC221829; U3 small nuclear RNA; integrin, beta 1 (ITGB1); acrosomal vesicle protein 1 (ACRV1) and CHK1 checkpoint homolog (CHEK1); prospero-related homeobox 1 (PROX1); FLJ20627 and FLJ12910; PIN2-interacting protein (PINX1) and SRY (sex-determining region Y)-box 7 (SOX7); LOC131920; region of chromosome 13q14; neurotrophic tyrosine kinase, receptor, type 3 (NTRK3); TERA protein and FLJ13224; LOC284260; POM (POM121 homolog) and ZP3 fusion (POMZP3); DEAD/H box polypeptide 8 (DDX8) and similar to ribosomal protein L29 (cell surface heparin binding protein HIP) (LOC284064); LOC345307 and UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7 (GALNT7); Mus musculus 5S rRNA pseudogene (Rn5s-ps1); ribosomal protein L27a pseudogene (RPL27AP) and v-myb myeloblastosis viral oncogene homolog-like 2 (MYBL2); Down's syndrome cell adhesion molecule like 1 (DSCAML1); LOC148529; Huntington-associated protein interacting protein (HAPIP); LOC158525 and similar to RIKEN cDNA 1210001E11 (LOC347366); hypothetical protein FLJ12910; LOC350411; allograft inflammatory factor 1 (AIF1) and HLA-B associated transcript 2 (BAT2); C10orf7; LOC346658 and LOC340349; region of chromosome 12q21; LOC339248 and FLJ22659; SR rich protein DKFZp564B0769 and hypothetical protein MGC14793; FLJ10439; cytochrome P450, family 11, subfamily A, polypeptide 1 (CYP11A1) and sema domain, immunoglobulin domain (Ig) and GPI membrane anchor, (semaphoring) 7A; ribosomal protein S16 (RPS16); hypothetical protein DKFZp434H0115 and ATP citrate lyase (ACLY); calnexin (CANX); protein tyrosine phosphatase, receptor type, K (PTPRK); cyclin M2 (CNNM2); or AXL receptor tyrosine kinase.
8. The method of claim 1, wherein interfering with the activity of the one or more host proteins comprises decreasing an interaction of a viral protein and the one or more host proteins by disrupting or decreasing expression of the one or more host proteins.
9. The method of claim 8, wherein the viral protein comprises a virus and decreasing the interaction of the viral protein and the one or more host proteins decreases or inhibits infection of a host cell by the virus.
10. The method of claim 8, wherein disrupting or decreasing expression of the host protein comprises disrupting or decreasing transcription of an mRNA encoding the host protein.
11. The method of claim 10, wherein disrupting or decreasing transcription of the mRNA comprises inserting a transposon or insertional vector into a coding region of the nucleic acid encoding the host protein.
12. The method of claim 10, wherein disrupting or decreasing the transcription of the mRNA comprises contacting the mRNA with an antisense RNA, RNAi, ribozyme, or siRNA that recognizes the mRNA.
13. The method of claim 1, wherein interfering with the activity of the host protein comprises decreasing an interaction of a viral protein and the host protein by contacting the cell with an agent that decreases or inhibits the activity or expression of the host protein or that disrupts expression of the host protein.
14. The method of claim 13, wherein the host cell is present in a host subject and wherein contacting the cell with the agent comprises administering the agent to the subject.
15. A method of decreasing HIV, Ebola, or influenza A infection of a host cell, comprising, decreasing an interaction between a viral nucleic acid and a host nucleic acid by decreasing the integration of the viral nucleic acid into the host nucleic acid, wherein the host nucleic acid comprises at least 90% identity to any target sequence associated with SEQ ID NOS: 1-117, 120-227, 229, and 231.
16. The method of claim 15, wherein the viral nucleic acid comprises a viral genome and the host nucleic acid comprises a host genome.
17. A method of treating an HIV, Ebola, or influenza A viral infection in a host subject, comprising administering to a subject having a viral infection an effective amount of an agent that interferes with the interaction of a virus and host protein, wherein the host protein is encoded by a nucleic acid comprising at least 90% identity to any target sequence associated with SEQ ID NOS: 1-117, 120-227, 229, and 231.
18. The method of claim 17, wherein the agent disrupts expression of the nucleic acid encoding the host protein.
19. The method of claim 18, wherein the agent is an antisense, ribozyme, or siRNA molecule that recognizes the nucleic acid sequence comprising at least 90% identity to any target sequence associated with SEQ ID NOS: 1-227, 229, and 231.
20. The method of claim 17, wherein the effective amount induces a prophylactic effect in the host, which inhibits infection of the host by a virus.
21. The method of claim 17, wherein the host was previously infected by a virus and the effective amount induces a therapeutic effect in the host.
22. A method of determining resistance or susceptibility to viral infection in a subject, comprising comparing a first nucleic acid sequence of a subject to a second nucleic acid sequence comprising any target sequence associated with SEQ ID NOS: 1-117, 120-227, 229, and 231, wherein a higher similarity between the first and second nucleic acid sequence indicates the subject is more susceptible to viral infection, and wherein a lesser similarity between the first and second nucleic acid sequence indicates the subject is more resistant to viral infection.
23. The method of claim 22, wherein the first nucleic acid sequence is obtained from a biological sample of the subject.
24. The method of claim 23, wherein the first nucleic acid sequence comprises a plurality of nucleic acid sequences, wherein each nucleic acid sequence is obtained from a different subject.
25. The method according to claim 22, further comprising determining a polymorphic variation within a population.
26. A method of decreasing HIV, Ebola, or influenza A infection of a host cell, comprising: contacting the host cell with an anti-protein binding agent that selectively or specifically binds to a host protein encoded by any target sequence associated with SEQ ID NOS: 1-117, 120-227, 229, and 231 or a protein sequence shown in any of SEQ ID NOS: 228, 230, or 232, wherein the anti-protein binding agent inhibits an interaction between the host protein and the HIV, Ebola, or influenza A virus.
27. The method of claim 26, wherein the host cell is present in a subject, and contacting the host cell with the anti-protein binding agent comprises administering the anti-protein binding agent to the subject.
28. A method of identifying a compound that decreases binding of a viral protein to a host protein and decreases viral infection, comprising: contacting the host protein with the viral protein and a test compound, wherein the host protein is a protein in Table 1, and the viral protein is an HIV, Ebola, or influenza A protein; and determining whether binding of the viral protein to the host protein is decreased in the presence of the test compound, the decrease in binding being an indication that the test compound decreases the binding of viral protein to the target protein, and decreases viral infection.
29. The method of claim 28, wherein the viral protein comprises a virus.
30. The method of claim 28, wherein the viral protein is a viral envelope protein.
31. The method of claim 28, wherein the viral protein is an HIV protein and the host protein is a protein encoded by a target sequence associated with SEQ ID NOS: 1-35.
32. The method of 28, wherein the viral protein is an influenza A protein and the host protein is a protein encoded by a target sequence associated with SEQ ID NOS: 36-63.
33. The method of claim 28, wherein the viral protein is an Ebola protein and the host protein is a protein encoded by a target sequence associated with SEQ ID NOS: 64-117, 120-227, 229, and 231.
34. The method of claim 28, wherein the method comprises expressing the host protein in a cell, and contacting the host protein with the viral protein and a test compound comprises exposing the cell to the viral protein and the test compound.
Description:
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This is a divisional application of co-pending U.S. application Ser. No. 10/535,523, filed Mar. 24, 2006, which is of the U.S. National Stage of International Application No. PCT/US2003/037143, filed Nov. 18, 2003 (published in English under PCT Article 21(2)), which in turn claims the benefit of U.S. Provisional Application Nos. 60/427,464 filed Nov. 18, 2002 and 60/482,604 filed Jun. 25, 2003. The entire disclosures of the prior applications are considered to be part of the disclosure of the accompanying application and are hereby incorporated by reference.
FIELD
[0003] The present disclosure relates to host nucleic acid sequences, and proteins encoded by these sequences, that are involved in viral infection or are otherwise associated with the life cycle of a virus. Decreasing or inhibiting the interaction of these host sequences with a viral sequence can be used to decrease or inhibit infection by the virus.
BACKGROUND
[0004] Infectious diseases affect the health of people and animals around the world, causing serious illness and death. Public health efforts have focused on behavioral modification and other public health efforts to reduce the incidences of infection, while treatment regimens for these diseases have focused on pharmaceuticals, such as antibiotics and anti-viral medications. However, educating people about modifying behavior can be difficult, and that approach alone rarely can significantly diminish the incidence of infection. Furthermore, modifying the behavior of domestic or wild animals would not result in diminished infections. Stopping the spread of infections in an animal population typically involves wholesale slaughter. Few vaccines are available or wholly effective, and they tend to be specific for particular conditions.
[0005] The rate of HIV (human immunodeficiency virus) infection is increasing. HIV and its associated acquired immune deficiency syndrome (AIDS) accounted for approximately 5% of all deaths in the United States in the year 2000, while over 313,000 persons were reported to be living with AIDS in that same year. Centers for Disease Control and Prevention, HIV/AIDS Surveillance Supplemental Report, 8(1):1-22 (2002). These increasing infection rates have occurred, even though the mode of HIV infection has been known for almost 20 years, and educational programs around the world have promoted behavioral modifications meant to reduce HIV infection. Incidence and death rates due to HIV disease have been decreasing since the mid-90's, in part due to aggressive antiviral therapies, which frequently have toxic side effects and strict dosage schedules. However, even with treatment, the patient is not cured of the disease, and to date, no effective vaccine therapy has been found.
[0006] In other diseases, such as infection by the Ebola virus, not only are treatments limited, but containment or prevention of infections is difficult because the life cycle of the virus is not well known. The natural reservoir for the Ebola virus, that is the place or population in nature where the virus resides between human outbreaks, has not yet been identified.
[0007] Additionally, different viral strains can rapidly evolve in response to drug usage, producing drug-resistant strains. For example, strains of the influenza virus resistant to amantadine and rimantadine have recently arisen. A recent study of 80 newly-infected people conducted by the AIDS Research Center at Rockefeller University in New York, found that as many as 16.3% of these individuals had strains of HIV associated with resistance to some treatments, and 3.8% appeared to be resistant to several currently available anti-HIV drugs. Thus, a need exists for alternative treatments for infectious disease and methods of designing new drugs to combat infectious disease.
SUMMARY
[0008] Several host nucleic acid sequences involved in viral infection have been identified using gene trap methods. The identification of these host sequences and their encoded products permits the identification of sequences that can be targeted for therapeutic intervention.
[0009] The disclosed host sequences (including the target sequences associated with SEQ ID NOS: 1-227, 229, and 231, and the proteins encoded thereby (such as SEQ ID NOS: 228, 230, and 232), as well as variants, fusions, and fragments thereof that retain the appropriate biological activity) can mediate infection, and in some examples these host nucleic acids are required for infection. For example, the host nucleic acid can encode a cellular receptor or ligand or a fragment thereof that is recognized by a virus, such as the T-cell V-D-J beta 2.1 chain. In another example, the host nucleic acid encodes an enzyme that mediates viral infection, such as the β-chimerin rho-GTPase (referred to herein as β-chimerin). In another example, the host nucleic acid encodes a Ras oncogene family member such as Rab9. It is demonstrated herein that Rab9 is a host protein involved in infection by pathogens (such as viruses and bacteria) that use similar pathways for morphogenesis of infectious particles. In particular examples, Rab9 is involved in infection by pathogens (such as viruses and bacteria) that utilize lipid rafts. Thus, for example, interfering with the interaction between the disclosed host proteins and a viral or pathogen protein, for example by disrupting the expression of the host nucleic acid within a host cell, or by administering an agent that decreases binding between a host protein and a viral protein, can inhibit, or even prevent, infection of that host cell by the associated virus. Moreover, the identification of particular host enzymes or other host proteins involved in infection provides a method for developing new therapies targeted at inhibiting infection, at the protein or nucleic acid level.
[0010] In some examples, the nucleic acid itself mediates viral infection. For example, the nucleotide sequence of a host nucleic acid in the host genome can be recognized by the virus during integration of the viral genome into the host genome. The identification of nucleic acid sequences that are involved in the pathogenesis of infection therefore provides an important tool for interfering with infection.
[0011] This genomics-based discovery of nucleic acids and proteins involved in, or even required for, infection provides a new paradigm for identifying and validating various aspects of infectious disease, including assessing individual or population resistance to infection and finding novel diagnostic and drug targets for infectious disease and altering the nucleotide sequence of the host nucleic acid.
[0012] Based on the identification of several host nucleic acid and protein sequences involved in viral infection, provided herein are methods for decreasing infection of a host cell by a virus, such as HIV, Ebola, or influenza A, or treating such a viral infection, by interfering with the activity or expression of one or more host proteins shown in Table 1 (including the target sequences associated with any of SEQ ID NOS: SEQ ID NOS: 1-232, as well as variants, fragments, and fusions thereof), such as at least two host proteins, or at least three host proteins. Also provided are methods for identifying agents that can decrease viral infection of a host cell, such as infection by HIV, Ebola, or influenza A. In addition, cells and non-human mammals are provided that have decreased susceptibility to viral infection, such as HIV, Ebola, or influenza A infection.
BRIEF DESCRIPTION OF THE FIGURES
[0013] FIG. 1 is a schematic illustration of the U3neoSV1 retroviral vector, which is capable of isolating the nucleic acids described herein using the gene-trap method.
[0014] FIG. 2 is a schematic illustration of the gene-trap method.
[0015] FIG. 3 is a schematic illustration of one method of identifying host genes described herein.
[0016] FIG. 4 is a flow chart illustrating a method for isolating cells resistant to HIV infection, including HIV-1 and HIV-2 infection.
[0017] FIG. 5 is a bar graph showing the relative amount of p24 in HIV-infected cells in the presence of various siRNAs. CHN (β-chimerin); KOX (similar to KOX4 (LOC131880) and LOC166140); RBB (retinoblastoma binding protein 1); RAB (Rab9); KIAA1259; F3 (tissue factor 3; thromboplastin); AXL (AXL receptor tyrosine kinase); Msleb (mammalian selenium binding protein).
[0018] FIG. 6 is a schematic drawing showing a model of Rab9 involvement in lipid raft formation.
SEQUENCE LISTING
[0019] The nucleotide sequences of the nucleic acids described herein are shown using standard letter abbreviations for nucleotide bases, and three letter code for amino acids. Only one strand of each nucleic acid sequence is shown, but the complementary strand is understood as included by any reference to the displayed strand. Additionally, the nucleic acid sequences shown in SEQ ID NOS: 1-226 inherently disclose the corresponding polypeptide sequences of coding sequences (resulting translations of the nucleotide sequences), even when those polypeptide sequences are not explicitly provided herein.
[0020] SEQ ID NO: 1 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 18E8, entire insert. The human homolog is the (-) strand of GenBank Accession No. NG--001333.1, T-cell receptor V beta chain (T-cell receptor beta). Further information on the T-cell receptor V beta chain can be found in WO 01/23409, WO 01/55302, WO 01/57182, and WO 01/94629.
[0021] SEQ ID NO: 2 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 18BA, distal end. The human homolog is the (-) strand of GenBank Accession No. AC104597.3, T-cell receptor V beta chain.
[0022] SEQ ID NO: 3 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 18BA, proximal end. The human homolog is the (+) strand of GenBank Accession No. NG--001333.1, T-cell receptor beta.
[0023] SEQ ID NO: 4 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 18BE, distal end. The human homolog is the (+) strand of GenBank Accession No. AC00616.7, T-cell receptor beta.
[0024] SEQ ID NO: 5 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 18BE, middle of insert. The human homolog is the (-) strand of GenBank Accession No. AC104597.3, T-cell receptor beta.
[0025] SEQ ID NO: 6 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 18BE, proximal end. The human homolog is the (+) strand of GenBank Accession No. NG--001333.1, T-cell receptor beta.
[0026] SEQ ID NO: 7 is a nucleic acid sequence associated with viral, such as HIV, infection which corresponds to the sequence identified as Nucleotide Sequence 18E6, proximal end. The human homolog is the (-) strand of GenBank Accession No. NG--001333.1, T-cell receptor beta.
[0027] SEQ ID NO: 8 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 2E21, proximal end. The human homolog is the (+) strand of GenBank Accession No. NG--001333.1, T-cell receptor beta.
[0028] SEQ ID NO: 9 is a nucleic acid sequence associated with viral, such as HIV, infection which corresponds to the sequence identified as Nucleotide Sequence 2E22, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC099395.2, T-cell receptor beta.
[0029] SEQ ID NO: 10 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 2B 13, proximal end. The human homolog is the (-) strand of GenBank Accession No. NG--001333.1, T-cell receptor beta.
[0030] SEQ ID NO: 11 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 2B 14, proximal end. The human homolog is the (-) strand of GenBank Accession No. NG--001333.1, T-cell receptor beta.
[0031] SEQ ID NO: 12 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 2B15, distal end. The human homolog is the (+) strand of GenBank Accession No. NG--001333.1, T-cell receptor beta.
[0032] SEQ ID NO: 13 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 2B15, proximal end. The human homolog is the (-) strand of GenBank Accession No. NG--001333.1, T-cell receptor beta.
[0033] SEQ ID NO: 14 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 2B16, proximal end. The human homolog is the (-) strand of GenBank Accession No. NG--001333.1, T-cell receptor beta.
[0034] SEQ ID NO: 15 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 2E23, distal end. The human homolog is the (-) strand of GenBank Accession No. NG--001333.1, T-cell receptor beta.
[0035] SEQ ID NO: 16 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 2E23, proximal end. The human homolog is the (+) strand of GenBank Accession No. NG--001333.1, T-cell receptor beta.
[0036] SEQ ID NO: 17 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 2E24, proximal end. The human homolog is the (+) strand of GenBank Accession No. NG--001333.1, T-cell receptor beta.
[0037] SEQ ID NO: 18 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 2E25, proximal end. The human homolog is the (+) strand of GenBank Accession No. NG--001333.1, T-cell receptor beta.
[0038] SEQ ID NO: 19 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 2E26, proximal end. The human homolog is the (+) strand of GenBank Accession No. NG--001333.1, T-cell receptor beta.
[0039] SEQ ID NO: 20 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 18BD, proximal end. The human homolog is the (+) strand of GenBank Accession No. M16834.1, T-cell receptor V-D-J-beta 2.1 chain (described in WO 02/057414 and Reynolds et al., Cell 50(1):107-17, 1987).
[0040] SEQ ID NO: 21 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 18E7, distal end. The human homolog is the (-) strand of GenBank Accession No. AC004593.1 including beta-chimaerin rho GTPase (CHN2) (for example see WO 01/12659).
[0041] SEQ ID NO: 22 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 18E7, proximal end. The human homologs are the (-) strand of GenBank Accession No. NG--001333.1, T-cell receptor beta; and the (+) strand of GenBank Accession No. AC004593.1 including beta-chimaerin (CHN2).
[0042] SEQ ID NO: 23 is a nucleic acid sequence associated with viral, such as HIV and influenza A, infection, and is the clone identified as Nucleotide Sequence 18E6, distal end. The human homolog is the (+) strand of GenBank Accession No. AL049699.8, including malic enzyme 1 (ME1) NADP(+)-dependent cytosolic. Further information on this gene can be found in WO 01/55301 and WO 01/53312.
[0043] SEQ ID NO: 24 is a nucleic acid sequence associated with viral, such as HIV and influenza A, infection, and is the clone identified as Nucleotide Sequence 18BD, distal end. The human homolog is the (+) strand of GenBank Accession No. AC123903.1, including hypothetical protein XP--174419.
[0044] SEQ ID NO: 25 is a nucleic acid sequence associated with viral, such as HIV and influenza A, infection, and is the clone identified as Nucleotide Sequence 18E9, distal end. The human homolog is the (+) strand of GenBank Accession No. AC096736.3, a region of chromosome 4q31.3-32.
[0045] SEQ ID NO: 26 is a nucleic acid sequence associated with viral, such as HIV and influenza A, infection, and is the clone identified as Nucleotide Sequence 18E9, middle of insert. The human homolog is the (+) strand of GenBank Accession No. AC096736.3, a region of chromosome 4q31.3-32.
[0046] SEQ ID NO: 27 is a nucleic acid sequence associated with viral, such as HIV and influenza A, infection, and is the clone identified as Nucleotide Sequence 18E9, proximal end. The human homologs are the (-) strand of GenBank Accession No. NG--001333.1, T-cell receptor beta; and (-) strand of GenBank Accession No. AC096736.3, a region of chromosome 4q31.3-32.
[0047] SEQ ID NO: 28 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 2E21, distal end. The human homolog is the (-) strand of GenBank Accession No. M26920.1, alpha satellite DNA.
[0048] SEQ ID NO: 29 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 2E22, distal end. The human homologs are the (+) strand of GenBank Accession No. AP004369.3, including LOC253788 (and neighboring similar to RIKEN cDNA 1700001L23 (LOC219938)); and the (+) strand of GenBank Accession No. AC093117.2, between coagulation factor III, thromboplastin, tissue factor (F3) and LOC91759.
[0049] SEQ ID NO: 30 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 2B 13, distal end. The human homolog is the (-) strand of GenBank Accession No. AC092043.2, between similar to zinc finger protein 7 KOX4 (LOC131880) and LOC166140.
[0050] SEQ ID NO: 31 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 2B 14, distal end. The human homologs are the (-) strand of GenBank Accession No. AL136963.17, between LOC222474 and similar to Rho guanine nucleotide exchange factor 4, isoform a, APC-stimulated guanine nucleotide exchange factor (LOC221178); and the (+) strand of GenBank Accession No. NG--001333.1, T-cell receptor beta.
[0051] SEQ ID NO: 32 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 2B16, distal end. The human homolog is the (-) strand of GenBank Accession No. AL133293.28, between ribosomal protein L7A-like 4 (RPL7AL4) and v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) (SRC).
[0052] SEQ ID NO: 33 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 2E24, distal end. The human homolog is the (-) strand of GenBank Accession No. AL161417.17, KIAA0564.
[0053] SEQ ID NO: 34 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 2E25, distal end. The human homologs are the (-) strand of GenBank Accession No. Z12006.1, alpha satellite DNA; and the (+) and (-) strands of GenBank Accession No. AC093577.2, M96 protein.
[0054] SEQ ID NO: 35 is a nucleic acid sequence associated with viral, such as HIV, infection, and is the clone identified as Nucleotide Sequence 2E26, distal end. The human homologs are the (-) strand of GenBank Accession No. Z78022.1, hypothetical protein similar to G proteins, especially RAP-2A (L0057826); and the (+) strand of GenBank Accession No. AL136220.14, between LOC161005 and osteoblast specific factor 2 (fasciclin I-like; OSF-2).
[0055] SEQ ID NO: 36 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B3B1, distal end. The canine homolog is the (+) and (-) strand portions of GenBank Accession No. AJ012166.1, Canis familiaris TCTA gene, AMT gene, DAG1 gene, and BSN gene.
[0056] SEQ ID NO: 37 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B5B5, distal end. The canine homolog is the (+) and (-) strand portions of GenBank Accession No. AJ012166.1, Canis familiaris TCTA gene, AMT gene, DAG1 gene, and BSN gene.
[0057] SEQ ID NO: 38 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B1B1, distal end. The human homolog is the (+) strand of GenBank Accession No. AC117507.5, including LIM domain containing preferred translocation partner in lipoma (LPP).
[0058] SEQ ID NO: 39 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B1B2, distal end. The human homolog is the (-) strand of GenBank Accession No. AC117507.5, including LIM domain containing preferred translocation partner in lipoma (LPP).
[0059] SEQ ID NO: 40 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B1B4, distal end. The human homolog is the (-) strand of GenBank Accession No. AC117507.5, including LIM domain containing preferred translocation partner in lipoma (LPP).
[0060] SEQ ID NO: 41 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B1B5, distal end. The human homolog is the (-) strand of GenBank Accession No. AC117507.5, including LIM domain containing preferred translocation partner in lipoma (LPP).
[0061] SEQ ID NO: 42 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B1B6, distal end. The human homolog is the (-) strand of GenBank Accession No. AC117507.5, including LIM domain containing preferred translocation partner in lipoma (LPP).
[0062] SEQ ID NO: 43 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B1E3, entire insert. The human homolog is the (+) strand of GenBank Accession No. AC117507.5, including LIM domain containing preferred translocation partner in lipoma (LPP).
[0063] SEQ ID NO: 44 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B1E5, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC117507.5, including LIM domain containing preferred translocation partner in lipoma (LPP).
[0064] SEQ ID NO: 45 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B6B1, entire insert. The human homolog is the (-) strand of GenBank Accession No. AC117507.5, including LIM domain containing preferred translocation partner in lipoma (LPP).
[0065] SEQ ID NO: 46 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B6E1, distal end. The human homolog is the (+) strand of GenBank Accession No. AC117507.5, including LIM domain containing preferred translocation partner in lipoma (LPP).
[0066] SEQ ID NO: 47 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B6E1, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC117507.5, including LIM domain containing preferred translocation partner in lipoma (LPP).
[0067] SEQ ID NO: 48 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B6E3, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC117507.5, including LIM domain containing preferred translocation partner in lipoma (LPP).
[0068] SEQ ID NO: 49 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B1E1, distal end. The human homolog is the (+) strand of GenBank Accession No. AC104036.8, between LOC253121 and hyaluronan synthase 2 (HAS2).
[0069] SEQ ID NO: 50 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B1E1, proximal end. The human homolog is the (-) strand of GenBank Accession No. AF260225.1, Testin 2 and Testin 3 (see WO 01/57270, WO 01/57271, WO 01/57273, WO 01/57274, WO 01/57275, WO 01/57276, WO 01/57277, WO 01/57278, or Tatarelli et al., Genomics 68(1):1-12, 2000).
[0070] SEQ ID NO: 51 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B1E4, distal end. The human homolog is the (+) strand of GenBank Accession No. AF260225.1, Testin 2 and Testin 3.
[0071] SEQ ID NO: 52 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B1E4, proximal end. The human homolog is the (-) strand of GenBank Accession No. AF260225.1, Testin 2 and Testin 3.
[0072] SEQ ID NO: 53 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B6E2, distal end. The human homolog is the (+) strand of GenBank Accession No. AF260225.1, Testin 2 and Testin 3.
[0073] SEQ ID NO: 54 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B6E2, proximal end. The human homolog is the (-) strand of GenBank Accession No. AF260225.1, Testin 2 and Testin 3.
[0074] SEQ ID NO: 55 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B6E4, proximal end. The human homolog is the (-) strand of GenBank Accession No. AF260225.1, Testin 2 and Testin 3.
[0075] SEQ ID NO: 56 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B7E1, distal end. The human homolog is the (+) strand of GenBank Accession No. AF260225.1, Testin 2 and Testin 3.
[0076] SEQ ID NO: 57 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B7E1, proximal end. The human homolog is the (-) strand of GenBank Accession No. AF260225.1, Testin 2 and Testin 3.
[0077] SEQ ID NO: 58 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B5E2, distal end. The human homolog is the (-) strand of GenBank Accession No. AL133230.25, PTPN1 gene for protein tyrosine phosphatase, non-receptor type 1 (see Watanabe et al., Jpn. J. Cancer Res. 93:1114-22, 2002).
[0078] SEQ ID NO: 59 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B5E2, middle of insert. The human homolog is the (-) strand of GenBank Accession No. AL133230.25, PTPN1 gene for protein tyrosine phosphatase, non-receptor type 1.
[0079] SEQ ID NO: 60 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B3E11, distal end. The human homolog is the (+) strand of GenBank Accession No. AL445675.9, between LOC149360 and LOC253961.
[0080] SEQ ID NO: 61 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B3E11, proximal end. The human homolog is the (-) strand of GenBank Accession No. AL391986.12, between KIAA1560 and Tectorin beta (TECTB).
[0081] SEQ ID NO: 62 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B6E3, distal end. The human homolog is the (-) strand of GenBank Accession No. AC016826.9, including Cadherin related 23 (CDH23).
[0082] SEQ ID NO: 63 is a nucleic acid sequence associated with viral, such as influenza A, infection, and is the clone identified as Nucleotide Sequence B6E4, distal end. The human homolog is the (+) strand of GenBank Accession No. AL357372.12, Myeloid/lymphoma or mixed lineage leukemia, translocated to 10 (MMLT10).
[0083] SEQ ID NO: 64 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence ZV1-1B5, distal end. The human homolog is the (-) strand of GenBank Accession No. AL355802.13, between exportin 5 (XPO5) and DNA polymerase eta (POLH).
[0084] SEQ ID NO: 65 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence ZV1-1B5, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL355802.13, between XPO5 and POLH.
[0085] SEQ ID NO: 66 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence ZV1-1E, proximal end. The human homolog is the (-) strand of GenBank Accession No. AL355802.13, between XPO5 and POLH.
[0086] SEQ ID NO: 67 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV1-2E1, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL135744.4, including heterogenous nuclear riboprotein C(C1/C2) (HNRPC).
[0087] SEQ ID NO: 68 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV1-2E5, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL135744.4, including HNRPC.
[0088] SEQ ID NO: 69 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV1-2E6, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL135744.4, including HNRPC.
[0089] SEQ ID NO: 70 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV1-2B2, proximal end. The human homolog is the (-) strand of GenBank Accession No. AL135744.4, including HNRPC.
[0090] SEQ ID NO: 71 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV1-2B13, proximal end. The human homolog is the (-) strand of GenBank Accession No. AL135744.4, including HNRPC.
[0091] SEQ ID NO: 72 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV1-2B14, proximal end. The human homolog is the (-) strand of GenBank Accession No. AL135744.4, including HNRPC.
[0092] SEQ ID NO: 73 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV1-2B21, proximal end. The human homolog is the (-) strand of GenBank Accession No. AL135744.4, including HNRPC.
[0093] SEQ ID NO: 74 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV1-2B25, proximal end. The human homolog is the (-) strand of GenBank Accession No. AL135744.4, including HNRPC.
[0094] SEQ ID NO: 75 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV1-2B35, proximal end. The human homolog is the (-) strand of GenBank Accession No. AL135744.4, including HNRPC.
[0095] SEQ ID NO: 76 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV1-2E5, distal end. The human homolog is the (+) and (-) strands of GenBank Accession No. AL050324.5, including alpha-endosulfine pseudogene (ENSAP) and LOC128741.
[0096] SEQ ID NO: 77 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV1-2E6, distal end. The human homolog is the (+) strand of GenBank Accession No. AC017060.7, including LOC222888.
[0097] SEQ ID NO: 78 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV1-2B13, distal end. The human homolog is the (+) strand of GenBank Accession No. AL161731.20, between LOC138421 and zinc finger protein 297B (ZNF297B).
[0098] SEQ ID NO: 79 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV1-2B14, distal end. The human homolog is the (-) strand of GenBank Accession No. AC012366.10, including sideroflexin 5 (SFXN5).
[0099] SEQ ID NO: 80 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV1-2B35, distal end. The human homolog is the (+) strand of GenBank Accession No. AL645504.10, including importin 9 (FLJ10402).
[0100] SEQ ID NO: 81 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence GV1-1B1, distal end. The human homolog is the (+) strand of GenBank Accession No. NG--001333.1, T-cell receptor beta.
[0101] SEQ ID NO: 82 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence GV1-1B1, proximal end. The human homolog is the (+) strand of GenBank Accession No. NG--001333.1, T-cell receptor beta.
[0102] SEQ ID NO: 83 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV2-B1, distal end. The human homolog is the (-) strand of GenBank Accession No. AC058791.4, adjacent to LOC135952.
[0103] SEQ ID NO: 84 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV2-E2, distal end. The human homolog is the (+) strand of GenBank Accession No. AC058791.4, adjacent to LOC135952.
[0104] SEQ ID NO: 85 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV2-E2, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC058791.4, adjacent to LOC135952.
[0105] SEQ ID NO: 86 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV2-E3, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC058791.4, adjacent to LOC135952.
[0106] SEQ ID NO: 87 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV2-E4, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC058791.4, adjacent to LOC135952.
[0107] SEQ ID NO: 88 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV2-E5, distal end. The human homolog is the (+) strand of GenBank Accession No. AC058791.4, adjacent to LOC135952.
[0108] SEQ ID NO: 89 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV2-E5, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC058791.4, adjacent to LOC135952.
[0109] SEQ ID NO: 90 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV3-B1, distal end. The human homolog is the (-) strand of GenBank Accession No. AC058791.4, adjacent to LOC135952.
[0110] SEQ ID NO: 91 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV3-E2, distal end. The human homolog is the (+) strand of GenBank Accession No. AC058791.4, adjacent to LOC135952.
[0111] SEQ ID NO: 92 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV3-E2, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC058791.4, adjacent to LOC135952.
[0112] SEQ ID NO: 93 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV3-E4, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC058791.4, adjacent to LOC135952.
[0113] SEQ ID NO: 94 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV6-B1, distal end. The human homolog is the (+) and (-) strand of GenBank Accession No. AC058791.4, adjacent to LOC135952.
[0114] SEQ ID NO: 95 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV6-E1, distal end. The human homolog is the (+) strand of GenBank Accession No. AC058791.4, adjacent to LOC135952.
[0115] SEQ ID NO: 96 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV6-E1, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC058791.4, adjacent to LOC135952.
[0116] SEQ ID NO: 97 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV6-E4, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC058791.4, adjacent to LOC135952.
[0117] SEQ ID NO: 98 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV6-E5, distal end. The human homolog is the (+) strand of GenBank Accession No. AC058791.4, adjacent to LOC135952.
[0118] SEQ ID NO: 99 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV6-E5, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC058791.4, adjacent to LOC135952.
[0119] SEQ ID NO: 100 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV2-E1, distal end. The human homolog is the (+) strand of GenBank Accession No. AC021753.7, hypothetical protein KIAA1259.
[0120] SEQ ID NO: 101 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV2-E1, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC021753.7, hypothetical protein KIAA1259.
[0121] SEQ ID NO: 102 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV2-E3, distal end. The human homolog is the (+) and (-) strands of GenBank Accession No. AC107081.5, copper metabolism gene (MURR1) and chaperonin containing TCP1, subunit 4 (CCT4).
[0122] SEQ ID NO: 103 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV2-E4, distal end. The human homolog is the (-) strand of GenBank Accession No. AC099785.2, hypothetical protein FLJ40773 and similar to ribosomal protein L24-like (LOC149360).
[0123] SEQ ID NO: 104 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV2-E4, distal end. The human homolog is the (+) strand of GenBank Accession No. AF260225.1, Testin 2 and 3 (TES).
[0124] SEQ ID NO: 105 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV2-E4, proximal end. The human homolog is the (-) strand of GenBank Accession No. AF260225.1, Testin 2 and 3 (TES).
[0125] SEQ ID NO: 106 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV3-E7, distal end. The human homolog is the (+) strand of GenBank Accession No. AF260225.1, Testin 2 and 3 (TES).
[0126] SEQ ID NO: 107 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV3-E7, proximal end. The human homolog is the (-) strand of GenBank Accession No. AF260225.1, Testin 2 and 3 (TES).
[0127] SEQ ID NO: 108 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV3-B2, distal end. The human homolog is the (+) and (-) strands of GenBank Accession No. AC105934.2, polybromo 1 (PB1).
[0128] SEQ ID NO: 109 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV3-B4, distal end. The human homolog is the (+) strand of GenBank Accession No. AC022506.38, between DNA damage inducible transcript 3 (DDIT3) and KIAA1887.
[0129] SEQ ID NO: 110 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV3-B5, distal end. The human homolog is the (-) strand of GenBank Accession No. AL157834.12, PDZ and LIM domain 1 (elfin) (PDLIM1).
[0130] SEQ ID NO: 111 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV3-E1, distal end. The human homolog is the (+) strand of GenBank Accession No. AL110115.38, LOC284803.
[0131] SEQ ID NO: 112 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV3-E1, proximal end. The human homolog is the (-) strand of GenBank Accession No. AL110115.38, signal peptide peptidase (HM13) and LOC284803.
[0132] SEQ ID NO: 113 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV3-E3, distal end. The human homolog is the (-) strand of GenBank Accession No. AL117341.26, containing PRO0097 and adjacent to FLJ31958.
[0133] SEQ ID NO: 114 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV3-E3, proximal end. The human homolog is the (-) strand of GenBank Accession No. AP002076.3, small inducible cytokine E, member 1 (endothelial monocyte-activating) (SCYE1).
[0134] SEQ ID NO: 115 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV3-E6, distal end. The human homolog is the (+) strand of GenBank Accession No. AP002076.3, containing SCYE1.
[0135] SEQ ID NO: 116 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV3-E6, proximal end. The human homolog is the (-) strand of GenBank Accession No. AP002076.3, containing SCYE1.
[0136] SEQ ID NO: 117 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV3-E4, distal end. The human homolog is the (+) and (-) strands of GenBank Accession No. AC132812.9, between E3 ubiquitin ligase (SMURF2) and hypothetical protein MGC40489.
[0137] SEQ ID NO: 118 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV3-E5, distal end. The human homolog is the (+) strand of GenBank Accession No. AC079383.17, Ras oncogene family member Rab9.
[0138] SEQ ID NO: 119 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV3-E5, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC079383.17, Ras oncogene family member Rab9.
[0139] SEQ ID NO: 120 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV6-E2, distal end. The human homolog is the (-) strand of GenBank Accession No. AL132989.5, between PRO1617 and retinoblastoma binding protein 1 (RBBP1).
[0140] SEQ ID NO: 121 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV6-E2, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL132989.5, RBBP1.
[0141] SEQ ID NO: 122 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV6-E3, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL132989.5, retinoblastoma binding protein 1 (RBBP1).
[0142] SEQ ID NO: 123 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV6-E3, distal end. The human homolog is the (+) and (-) strands of GenBank Accession No. AC096669.1, a region of chromosome 2q12.
[0143] SEQ ID NO: 124 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV6-E4, distal end. The human homolog is the (-) strands of GenBank Accession No. AF196968.4, elongation factor for selenoprotein translation (SELB).
[0144] SEQ ID NO: 125 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-B1, distal end. The human homolog is the (-) strand of GenBank Accession No. AC112218.2, transcription factor SMIF (HSA275986).
[0145] SEQ ID NO: 126 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-B1, proximal end. The human homolog is the (+) strand of GenBank Accession No. AC112218.2, transcription factor SMIF (HSA275986).
[0146] SEQ ID NO: 127 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E1, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC112218.2, transcription factor SMIF (HSA275986).
[0147] SEQ ID NO: 128 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E1, distal end. The human homolog is the (+) strand of GenBank Accession No. AC112218.2, transcription factor SMIF (HSA275986).
[0148] SEQ ID NO: 129 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E2, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC112218.2, transcription factor SMIF (HSA275986).
[0149] SEQ ID NO: 130 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E3, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC112218.2, transcription factor SMIF (HSA275986).
[0150] SEQ ID NO: 131 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E4, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC112218.2, transcription factor SMIF (HSA275986).
[0151] SEQ ID NO: 132 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E5, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC112218.2, transcription factor SMIF (HSA275986).
[0152] SEQ ID NO: 133 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E6, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC112218.2, transcription factor SMIF (HSA275986).
[0153] SEQ ID NO: 134 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E7, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC112218.2, transcription factor SMIF (HSA275986).
[0154] SEQ ID NO: 135 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E8, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC112218.2, transcription factor SMIF (HSA275986).
[0155] SEQ ID NO: 136 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E9, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC112218.2, transcription factor SMIF (HSA275986).
[0156] SEQ ID NO: 137 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E10, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC112218.2, transcription factor SMIF (HSA275986).
[0157] SEQ ID NO: 138 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E2, distal end. The human homolog is the (+) strand of GenBank Accession No. AL031293.1, KIAA1026.
[0158] SEQ ID NO: 139 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E3, distal end. The human homolog is the (+) strand of GenBank Accession No. AL035587.5, trinucleotide repeat containing 5 (TNRC5).
[0159] SEQ ID NO: 140 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E4, distal end. The human homolog is the (-) strand of GenBank Accession No. AC126182.2, homogentisate 1,2-dioxygenase (HGD).
[0160] SEQ ID NO: 141 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E5, distal end. The human homolog is the (+) strand of GenBank Accession No. AL591643.4, a region of chromosome Xq23-24.
[0161] SEQ ID NO: 142 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E6, distal end. The human homolog is the (-) strand of GenBank Accession No. AC113603.3, a region of chromosome 4p15.3.
[0162] SEQ ID NO: 143 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E7, distal end. The human homolog is the (+) strand of GenBank Accession No. AC011995.8, similar to LWamide neuropeptide precursor protein [Hydractinia echinata] (LOC129883).
[0163] SEQ ID NO: 144 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E8, distal end. The human homolog is the (-) strand of GenBank Accession No. AC084208.5, a region of chromosome 2q21.
[0164] SEQ ID NO: 145 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E9, distal end. The human homolog is the (-) strand of GenBank Accession No. AL391259.15, a region of chromosome Xp11.4, including ubiquitin specific protease 9 (USP9X).
[0165] SEQ ID NO: 146 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV13-E10, distal end. The human homolog is the (+) strand of GenBank Accession No. AC006397.1, LOC221829.
[0166] SEQ ID NO: 147 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV7-B2, distal end. The human homolog is the (+) strand of GenBank Accession No. X14945.1, U3 small nuclear RNA gene.
[0167] SEQ ID NO: 148 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV7-B2, proximal end. The human homolog is the (+) strand of GenBank Accession No. X14945.1, U3 small nuclear RNA gene.
[0168] SEQ ID NO: 149 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV7-E1, proximal end. The human homolog is the (-) strand of GenBank Accession No. X14945.1, U3 small nuclear RNA gene.
[0169] SEQ ID NO: 150 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV7-E2, proximal end. The human homolog is the (-) strand of GenBank Accession No. X14945.1, U3 small nuclear RNA gene.
[0170] SEQ ID NO: 151 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV7-E2, distal end. The human homolog is the (-) strand of GenBank Accession No. X14945.1, U3 small nuclear RNA gene.
[0171] SEQ ID NO: 152 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV7-E5, proximal end. The human homolog is the (-) strand of GenBank Accession No. X14945.1, U3 small nuclear RNA gene.
[0172] SEQ ID NO: 153 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV8-E1, proximal end. The human homolog is the (-) strand of GenBank Accession No. X14945.1, U3 small nuclear RNA gene.
[0173] SEQ ID NO: 154 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV8-E1, distal end. The human homolog is the (+) strand of GenBank Accession No. X14945.1, U3 small nuclear RNA gene.
[0174] SEQ ID NO: 155 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV7-B3, distal end. The human homolog is the (+) strand of GenBank Accession No. AL365203.19, integrin, beta 1 (ITGB1).
[0175] SEQ ID NO: 156 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV7-B3, proximal end. The human homolog is the (-) strand of GenBank Accession No. AL365203.19, ITGB1.
[0176] SEQ ID NO: 157 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV7-E3, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL365203.19, ITGB1.
[0177] SEQ ID NO: 158 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV7-E3, distal end. The human homolog is the (-) strand of GenBank Accession No. AL365203.19, ITGB1.
[0178] SEQ ID NO: 159 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV7-E1, distal end. The human homolog is the (+) strand of GenBank Accession No. AP001132.4, acrosomal vesicle protein 1 (ACRV1) and CHK1 checkpoint homolog (CHEK1).
[0179] SEQ ID NO: 160 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV7-E5, distal end. The human homolog is the (-) strand of GenBank Accession No. AK025453.1, prospero-related homeobox 1 (PROX1).
[0180] SEQ ID NO: 161 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E1, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL590543.8, hypothetical protein FLJ20627.
[0181] SEQ ID NO: 162 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E2, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL590543.8, hypothetical protein FLJ20627.
[0182] SEQ ID NO: 163 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E3, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL590543.8, hypothetical protein FLJ20627.
[0183] SEQ ID NO: 164 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E4, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL590543.8, hypothetical protein FLJ20627.
[0184] SEQ ID NO: 165 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E4, distal end. The human homolog is the (-) strand of GenBank Accession No. AL590543.8, between hypothetical proteins FLJ20627 and FLJ12910.
[0185] SEQ ID NO: 166 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E5, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL590543.8, hypothetical protein FLJ20627.
[0186] SEQ ID NO: 167 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E8, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL590543.8, hypothetical protein FLJ20627.
[0187] SEQ ID NO: 168 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E9, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL590543.8, hypothetical protein FLJ20627.
[0188] SEQ ID NO: 169 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E9, distal end. The human homolog is the (-) strand of GenBank Accession No. AL590543.8, between hypothetical proteins FLJ20627 and FLJ12910.
[0189] SEQ ID NO: 170 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E10, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL590543.8, hypothetical protein FLJ20627.
[0190] SEQ ID NO: 171 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E10, distal end. The human homolog is the (-) strand of GenBank Accession No. AL590543.8, hypothetical protein FLJ20627.
[0191] SEQ ID NO: 172 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV19-E2, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL590543.8, hypothetical protein FLJ20627.
[0192] SEQ ID NO: 173 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV19-E2, distal end. The human homolog is the (-) strand of GenBank Accession No. AL590543.8, between hypothetical proteins FLJ20627 and FLJ12910.
[0193] SEQ ID NO: 174 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E1, distal end. The human homolog is the (+) strand of GenBank Accession No. AC105001.3, between PIN2-interacting protein 1 (PINX1) and SRY (sex-determining region Y)-box7 (SOX7).
[0194] SEQ ID NO: 175 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E2, distal end. The human homolog is the (-) strand of GenBank Accession No. AC009520.16, LOC131920.
[0195] SEQ ID NO: 176 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E3, distal end. The human homolog is the (-) strand of GenBank Accession No. AL596329.5, a region of chromosome 13q14.
[0196] SEQ ID NO: 177 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E5, distal end. The human homolog is the (+) strand of GenBank Accession No. AC023844.6, neurotrophic tyrosine kinase, receptor, type 3 (NTRK3).
[0197] SEQ ID NO: 178 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E7, promimal end. The human homolog is the (-) strand of GenBank Accession No. AC024940.39, between TERA protein (TERA) and hypothetical protein FLJ13224.
[0198] SEQ ID NO: 179 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E7, distal end. The human homolog is the (+) strand of GenBank Accession No. AC024940.39, flanking TERA protein (TERA) and hypothetical protein FLJ13224.
[0199] SEQ ID NO: 180 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E8, distal end. The human homolog is the (-) strand of GenBank Accession No. AC084335.6, hypothetical gene LOC284260.
[0200] SEQ ID NO: 181 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E11, proximal end. The human homolog is the (+) strand of GenBank Accession No. AC073108.9, POM (POM121 homolog) and ZP3 fusion (POMZP3).
[0201] SEQ ID NO: 182 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV14-E11, distal end. The human homolog is the (-) strand of GenBank Accession No. AC073108.9, POM (POM121 homolog) and ZP3 fusion (POMZP3).
[0202] SEQ ID NO: 183 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV19-E4, distal end. The human homolog is the (+) strand of GenBank Accession No. AC087650.12, between DEAD/H box polypeptide 8 (DDX8) and similar to ribosomal protein L29 (cell surface heparin binding protein HIP) (LOC284064).
[0203] SEQ ID NO: 184 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV20-E2, distal end. The human homolog is the (-) strand of GenBank Accession No. AC105285.3, LOC345307 and UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7 (GALNT7).
[0204] SEQ ID NO: 185 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV20-E2, proximal end. The human homolog is the (+) strand of GenBank Accession No. AC105285.3, LOC345307 and UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7 (GALNT7).
[0205] SEQ ID NO: 186 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV20-B1, distal end. The human homolog is the (+) strand of GenBank Accession No. AC105285.3, LOC345307 and UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7 (GALNT7).
[0206] SEQ ID NO: 187 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV20-E3, distal end. The murine homolog is the (+) strand of GenBank Accession No. NG--001440.1, Mus musculus 5S rRNA pseudogene (Rn5s-ps1).
[0207] SEQ ID NO: 188 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV20-E5, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL121886.22, between ribosomal protein L27a pseudogene (RPL27AP) and v-myb myeloblastosis viral oncogene homolog-like 2 (MYBL2).
[0208] SEQ ID NO: 189 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV28-E2, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL121886.22, between RPL27AP and MYBL2.
[0209] SEQ ID NO: 190 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV28-E6, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL121886.22, between RPL27AP and MYBL2.
[0210] SEQ ID NO: 191 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV28-E9, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL121886.22, between RPL27AP and MYBL2.
[0211] SEQ ID NO: 192 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV28-E9, distal end. The human homolog is the (-) strand of GenBank Accession No. AL121886.22, between RPL27AP and MYBL2.
[0212] SEQ ID NO: 193 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV20-E6, distal end. The human homolog is the (+) strand of GenBank Accession No. AP000711.4, Down's syndrome cell adhesion molecule like 1 (DSCAML1).
[0213] SEQ ID NO: 194 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV20-E7, distal end. The human homolog is the (+) strand of GenBank Accession No. AL391555.19, LOC148529.
[0214] SEQ ID NO: 195 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV20-B4, distal end. The human homolog is the (-) strand of GenBank Accession No. AC112129.4, Huntington-associated protein interacting protein (HAPIP).
[0215] SEQ ID NO: 196 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV22-E1, proximal end. The human homolog is the (-) strand of GenBank Accession No. Z69732.1, between LOC158525 and similar to RIKEN cDNA 1210001E11 (LOC347366).
[0216] SEQ ID NO: 197 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV22-E3, proximal end. The human homolog is the (-) strand of GenBank Accession No. Z69732.1, between LOC158525 and similar to RIKEN cDNA 1210001E11 (LOC347366).
[0217] SEQ ID NO: 198 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV22-E5, proximal end. The human homolog is the (-) strand of GenBank Accession No. Z69732.1, between LOC158525 and similar to RIKEN cDNA 1210001E11 (LOC347366).
[0218] SEQ ID NO: 199 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV22-E5, proximal end. The human homolog is the (-) strand of GenBank Accession No. Z69732.1, between LOC158525 and similar to RIKEN cDNA 1210001E11 (LOC347366).
[0219] SEQ ID NO: 200 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV22-E8, proximal end. The human homolog is the (-) strand of GenBank Accession No. Z69732.1, between LOC158525 and similar to RIKEN cDNA 1210001E11 (LOC347366).
[0220] SEQ ID NO: 201 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV22-E2, distal end. The human homolog is the (-) strand of GenBank Accession No. AL590543.8, hypothetical protein FLJ12910.
[0221] SEQ ID NO: 202 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV22-E2, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL590543.8, hypothetical protein FLJ12910.
[0222] SEQ ID NO: 203 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV22-E6, distal end. The human homolog is the (-) strand of GenBank Accession No. AL590543.8, hypothetical protein FLJ12910.
[0223] SEQ ID NO: 204 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV22-E6, proximal end. The human homolog is the (+) strand of GenBank Accession No. AL590543.8, hypothetical protein FLJ12910.
[0224] SEQ ID NO: 205 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV22-E7, distal end. The human homolog is the (+) strand of GenBank Accession No. AC005284.1, LOC350411.
[0225] SEQ ID NO: 206 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV22-E9, proximal end. The human homolog is the (+) strand of GenBank Accession No. AP000505.1, between allograft inflammatory factor 1 (AIF1) and HLA-B associated transcript 2 (BAT2).
[0226] SEQ ID NO: 207 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV27-E1, distal end. The human homolog is the (-) strand of GenBank Accession No. AC008755.8, C19orf7.
[0227] SEQ ID NO: 208 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV27-E2, distal end. The human homolog is the (+) strand of GenBank Accession No. AC058791.4, between LOC346658 and LOC340349.
[0228] SEQ ID NO: 209 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV27-E2, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC058791.4, between LOC346658 and LOC340349.
[0229] SEQ ID NO: 210 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV27-E3, distal end. The human homolog is the (+) strand of GenBank Accession No. AC079030.13, a region of chromosome 12q21.
[0230] SEQ ID NO: 211 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV27-E3, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC139138.2, between LOC339248 and hypothetical protein FLJ22659.
[0231] SEQ ID NO: 212 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV27-E4, distal end. The human homolog is the (-) strand of GenBank Accession No. AL513550.9, between SR rich protein DKFZp564B0769 and hypothetical protein MGC14793.
[0232] SEQ ID NO: 213 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV28-B1, distal end. The human homolog is the (-) strand of GenBank Accession No. AP001160.4, hypothetical protein FLJ10439.
[0233] SEQ ID NO: 214 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV28-B1, proximal end. The human homolog is the (+) strand of GenBank Accession No. AP001160.4, hypothetical protein FLJ10439.
[0234] SEQ ID NO: 215 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV28-B3, distal end. The human homolog is the (+) strand of GenBank Accession No. AC090826.15, between cytochrome P450, family 11, subfamily A, polypeptide 1 (CYP11A1) and sema domain, immunoglobulin domain (Ig) and GPI membrane anchor, (semaphoring) 7A.
[0235] SEQ ID NO: 216 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV28-B3, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC090826.15, between cytochrome P450, family 11, subfamily A, polypeptide 1 (CYP11A1) and sema domain, immunoglobulin domain (Ig) and GPI membrane anchor, (semaphoring) 7A.
[0236] SEQ ID NO: 217 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV28-E11, proximal end. The human homolog is the (+) strand of GenBank Accession No. AC090826.15, between cytochrome P450, family 11, subfamily A, polypeptide 1 (CYP11A1) and sema domain, immunoglobulin domain (Ig) and GPI membrane anchor, (semaphoring) 7A.
[0237] SEQ ID NO: 218 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV28-E11, distal end. The human homolog is the (-) strand of GenBank Accession No. AC090826.15, between cytochrome P450, family 11, subfamily A, polypeptide 1 (CYP11A1) and sema domain, immunoglobulin domain (Ig) and GPI membrane anchor, (semaphoring) 7A.
[0238] SEQ ID NO: 219 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV28-E1, proximal end. The human homolog is the (-) strand of GenBank Accession No. AC011500.7, ribosomal protein S16 (RPS16).
[0239] SEQ ID NO: 220 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV28-E1, distal end. The human homolog is the (+) strand of GenBank Accession No. AC011500.7, ribosomal protein S16 (RPS16).
[0240] SEQ ID NO: 221 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV28-E4, distal end. The human homolog is the (-) strand of GenBank Accession No. AC091172.11, between hypothetical protein DKFZp434H0115 and ATP citrate lyase (ACLY).
[0241] SEQ ID NO: 222 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV28-E4, proximal end. The human homolog is the (+) strand of GenBank Accession No. AC091172.11, between hypothetical protein DKFZp434H0115 and ACLY.
[0242] SEQ ID NO: 223 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV28-E7, distal end. The human homolog is the (+) strand of GenBank Accession No. AL035594.7, protein tyrosine phosphatase, receptor type, K (PTPRK).
[0243] SEQ ID NO: 224 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV28-E7, proximal end. The human homolog is the (+) strand of GenBank Accession No. AC124857.2, calnexin (CANX) and (-) strand of GenBank Accession No. AL035594.7, protein tyrosine phosphatase, receptor type, K (PTPRK).
[0244] SEQ ID NO: 225 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV28-E8, distal end. The human homolog is the (+) strand of GenBank Accession No. AC009144.5, cyclin M2 (CNNM2).
[0245] SEQ ID NO: 226 is a nucleic acid sequence associated with viral, such as Ebola, infection, and is the clone identified as Nucleotide Sequence MV28-E8, proximal end. The human homolog is the (+) strand of GenBank Accession No. AC011510.7, AXL receptor tyrosine kinase (AXL).
[0246] SEQ ID NO: 227 is a nucleic acid sequence showing GenBank Accession No. BC008947, Homo sapiens chromosome 10 open reading frame 3, mRNA (cDNA clone MGC:3422 IMAGE:3028566). This sequence is associated with viral infection, such as Ebola infection.
[0247] SEQ ID NO: 228 is an amino acid sequence encoded by SEQ ID NO: 227.
[0248] SEQ ID NO: 229 is a nucleic acid sequence showing GenBank Accession No. NM--018131, Homo sapiens chromosome 10 open reading frame 3 (C10orf3). This sequence is associated with viral infection, such as Ebola infection.
[0249] SEQ ID NO: 230 is an amino acid sequence encoded by SEQ ID NO: 229.
[0250] SEQ ID NO: 231 is a nucleic acid sequence showing GenBank Accession No. NM--013451, Homo sapiens fer-1-like 3, myoferlin (C. elegans) (FER1L3), transcript variant 1, mRNA. This sequence is associated with viral infection, such as Ebola infection.
[0251] SEQ ID NO: 232 is an amino acid sequence encoded by SEQ ID NO: 231.
[0252] SEQ ID NOS: 233 and 234 are exemplary complementary primers.
[0253] SEQ ID NOS: 235-237 are primer sequences used to sequence the shuttle clones as described in Example 2.
[0254] SEQ ID NOS: 238-241 are Rab9 siRNA sequences.
[0255] SEQ ID NOS: 242-245 are AXL receptor tyrosine kinase siRNA sequences.
[0256] SEQ ID NOS: 246-295 are beta-chimerin receptor tyrosine kinase RNAi sequences.
[0257] SEQ ID NOS: 296-345 are retinoblastoma binding protein 1 RNAi sequences.
[0258] SEQ ID NOS: 346-395 are Homo sapiens chromosome 10 open reading frame 3 RNAi sequences.
[0259] SEQ ID NOS: 396-445 are Homo sapiens fer-1-like 3, myoferlin (C. elegans), transcript variant 1 RNAi sequences.
[0260] SEQ ID NOS: 446-495 are Homo sapiens chromosome 10 open reading frame 3 (C10orf3) RNAi sequences.
[0261] SEQ ID NOS: 496-545 are malic enzyme RNAi sequences.
[0262] SEQ ID NOS: 546-595 are cadherin related 23 RNAi sequences.
[0263] SEQ ID NOS: 596-645 are sideroflexin 5 RNAi sequences.
[0264] SEQ ID NOS: 646-695 are polybromo 1 (PB1) RNAi sequences.
[0265] SEQ ID NOS: 696-720 are elongation factor for selenoprotein translation RNAi sequences.
[0266] SEQ ID NOS: 721-745 are integrin, beta 1 RNAi sequences.
[0267] SEQ ID NOS: 746-795 are Huntington interacting protein 1 RNAi sequences.
[0268] SEQ ID NOS: 796-845 are cyclin M2 RNAi sequences.
DETAILED DESCRIPTION OF SEVERAL EMBODIMENTS
Abbreviations and Terms
[0269] The following explanations of terms and methods are provided to better describe the present disclosure and to guide those of ordinary skill in the art in the practice of the present disclosure. The singular forms "a," "an," and "the" refer to one or more than one, unless the context clearly dictates otherwise. For example, the term "comprising a nucleic acid" includes single or plural nucleic acids and is considered equivalent to the phrase "comprising at least one nucleic acid." The term "or" refers to a single element of stated alternative elements or a combination of two or more elements, unless the context clearly indicates otherwise. For example, the phrase "a first nucleic acid or a second nucleic acid" refers to the first nucleic acid, the second nucleic acid, or a combination of both the first and second nucleic acids. As used herein, "comprises" means "includes." Thus, "comprising a promoter and an open reading frame," means "including a promoter and an open reading frame," without excluding additional elements.
[0270] Unless explained otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described below. The materials, methods, and examples are illustrative only and not intended to be limiting.
[0271] A=adenine
[0272] C=cytosine
[0273] DNA=deoxyribonucleic acid
[0274] ds=double-stranded (for example, dsDNA)
[0275] G=guanine
[0276] mg=milligram
[0277] ng=nanogram
[0278] PCR=polymerase chain reaction
[0279] Pu=purine
[0280] Py=pyrimidine
[0281] RNA=ribonucleic acid
[0282] mRNA=messenger RNA
[0283] MOI=multiplicity of infection
[0284] siRNA=short interfering or interrupting RNA
[0285] ss=single-stranded (for example, ssDNA)
[0286] T=thymine
[0287] Tm=melting temperature
[0288] U=uracil
[0289] μg=microgram
[0290] μl=microliter
[0291] Amplification of a nucleic acid. To increase the number of copies of a nucleic acid. Several methods can be used to amplify a nucleic acid, such as polymerase chain reaction (PCR). Other examples of amplification include, but are not limited to, strand displacement amplification (U.S. Pat. No. 5,744,311); transcription-free isothermal amplification (U.S. Pat. No. 6,033,881); repair chain reaction amplification (WO 90/01069); ligase chain reaction amplification (European Patent Appl. 320 308); gap filling ligase chain reaction amplification (U.S. Pat. No. 5,427,930); and NASBA® RNA transcription-free amplification (U.S. Pat. No. 6,025,134).
[0292] The amplification products ("amplicons") can be further processed, manipulated, or characterized by electrophoresis, restriction endonuclease digestion, hybridization, nucleic acid sequencing, ligation, or other molecular biology techniques. Standard protocols can be modified. For example, PCR can be modified by using reverse transcriptase PCR(RT-PCR) to amplify RNA molecules.
[0293] Antisense, Sense, and Antigene. Antisense molecules are molecules that are specifically hybridizable or specifically complementary to either RNA or the plus strand of DNA. Sense molecules are molecules that are specifically hybridizable or specifically complementary to the minus strand of DNA. Antigene molecules are either antisense or sense molecules directed to a particular dsDNA target. These molecules can be used to interfere with gene expression.
[0294] Double-stranded DNA (dsDNA) has two strands, a 5' to 3' strand, referred to as the plus (+) strand, and a 3' to 5' strand (the reverse complement), referred to as the minus (-) strand.
[0295] Because RNA polymerase adds nucleic acids in a 5' to 3' direction, the minus strand of the DNA serves as the template for the RNA during transcription. Thus, the RNA formed will have a sequence complementary to the minus strand and virtually identical to the plus strand, except that U is substituted for T in RNA molecules.
[0296] Array. An arrangement of biological samples or molecules, such as an arrangement of tissues, cells, or biological macromolecules (including, but not limited to, peptides or nucleic acids) in addressable locations on or in a substrate. The arrangement of molecules within the array can be regular, such as being arranged in uniform rows and columns, or irregular. The number of addressable locations within the array can vary, for example from a few (such as two or three) to more than 50, 100, 200, 500, 1000, 10,000, or more. In certain examples, the array includes one or more molecules or samples occurring on the array a plurality of times (twice or more) to provide an added feature to the array, such as redundant activity or to provide internal controls. A "microarray" is an array that is miniaturized and evaluated or analyzed using microscopy.
[0297] Within an array, each arrayed sample or molecule is addressable, such that its location can be reliably and consistently determined within the at least two dimensions of the array. The location or address of each sample or molecule can be assigned when it is applied to the array, and a key or guide can be provided in order to correlate each location with the appropriate target sample or molecule position. Ordered arrays can be arranged in a symmetrical grid pattern or other patterns, for example, in radially distributed lines, spiral lines, or ordered clusters. Addressable arrays can be computer readable; a computer can be programmed to correlate a particular address on the array with information about the sample at that position, such as hybridization or binding data, including signal intensity. In some exemplary computer readable formats, the individual samples or molecules in the array are arranged regularly (for example, in a Cartesian grid pattern), which can be correlated to address information by a computer.
[0298] The sample or molecule addresses on an array can assume many different shapes. For example, substantially square regions can be used as addresses within arrays, but addresses can be differently shaped, for example, substantially rectangular, triangular, oval, irregular, or another shape. The term "spot" refers generally to a localized placement of molecules, tissue or cells, and is not limited to a round or substantially round region or address.
[0299] Examples of macroarrays include the Histo®-array and INSTA-blot® lines of products available from Imgenix, Inc. (San Diego, Calif.) and the Max Array® line of products available from Zymed Laboratories, Inc. (South San Francisco, Calif.), while exemplary microarrays include the various GeneChip® technologies and products available from Affymetrix, Inc. (Santa Clara, Calif.) and the Hilight®, Label Star®, and Array-Ready Oligo Set lines of products available from Qiagen, Inc. (Valencia, Calif.).
[0300] β-chimerin. The term β-chimerin includes any β-chimerin gene, cDNA, RNA, or protein from any organism and is a β-chimerin that can function as a type of rho-GTPase. In some examples, β-chimerin is involved in viral infection.
[0301] Rho-GTPases are a family of small GTPases implicated as components of cellular signal transduction cascades. Signals that pass through rho-GTPase cascades can be initiated by the activation of cell surface proteins, such as growth factors. Functions of signaling cascades mediated by rho-GTPases, include, but are not limited to, alterations in cellular morphology which are linked to processes such as immune cell function, oncogenesis, metastasis and certain diseases (Peck, FEBS Lett. 528:27, 2002).
[0302] Examples of native β-chimerin nucleic acid sequences include, but are not limited to those shown in SEQ ID NOS: 21-22 (such as a target sequence associated with SEQ ID NOS: 21-22), as well as the protein sequence encoded thereby. This cell line remains CD4.sup.+ after exposure to HIV 1 and HIV 2 and is resistant to HIV infection. β-chimerin also includes variants, fusions, and fragments of the disclosed nucleic acid and amino acid sequences that retain β-chimerin biological activity.
[0303] Examples of β-chimerin amino acid sequences include, but are not limited to: Genbank Accession Nos: NM--004067 (mRNA) and NP--004058.1 (protein). In one example, a β-chimerin sequence includes a full-length wild-type (or native) sequence, as well as β-chimerin allelic variants, variants, fragments, homologs or fusion sequences that retain the ability to function as a type of rho-GTPase. In certain examples, β-chimerin has at least 80% sequence identity, for example at least 85%, 90%, 95%, or 98% sequence identity to a native β-chimerin.
[0304] cDNA (complementary DNA). A piece of DNA lacking internal, non-coding segments (introns) and transcriptional regulatory sequences. A cDNA also can contain untranslated regions (UTRs) that are responsible for translational control in the corresponding RNA molecule. cDNA can be produced using various methods, such as synthesis in the laboratory by reverse transcription from messenger RNA extracted from cells.
[0305] Complementary. Complementary binding occurs when the base of one nucleic acid molecule forms a hydrogen bond the base of another nucleic acid molecule. Normally, the base adenine (A) is complementary to thymidine (T) and uracil (U), while cytosine (C) is complementary to guanine (G). For example, the sequence 5'-ATCG-3' of one ssDNA molecule can bond to 3'-TAGC-5' of another ssDNA to form a dsDNA.
[0306] Nucleic acid molecules can be complementary to each other even without complete hydrogen-bonding of all bases of each molecule. By way of example only (and without limitation), the ssDNA: 5'-GCTTGCCAAACCTACA-3' (SEQ ID NO: 233) is considered complementary to the ssDNA 3'-CGAACGGTCTGGATGT-5' (SEQ ID NO: 234) even though there is a mismatched base pair (A-C rather than A-T or G-C) at the ninth position.
[0307] Conservative substitution: A substitution of an amino acid residue for another amino acid residue having similar biochemical properties. Typically, conservative substitutions have little to no impact on the biological activity of a resulting polypeptide. In a particular example, a conservative substitution is an amino acid substitution in a peptide that does not substantially affect the biological function of the peptide. A peptide can include one or more amino acid substitutions, for example 2-10 conservative substitutions, 2-5 conservative substitutions, 4-9 conservative substitutions, such as 2, 5 or 10 conservative substitutions.
[0308] For example, a conservative substitution in a β-chimerin peptide (such as a peptide encoded by a target sequence associated with SEQ ID NO: 21 or 22) does not substantially affect the ability of β-chimerin to confer resistance to HIV infection. In another example, a conservative substitution in a Rab9 peptide (such as a peptide encoded by a target sequence associated with SEQ ID NOS: 118 or 119) is one that does not substantially affect the ability of Rab9 to confer resistance to infection by a pathogen that can hijack a lipid raft, such as HIV or Ebola.
[0309] A polypeptide can be produced to contain one or more conservative substitutions by manipulating the nucleotide sequence that encodes that polypeptide using, for example, standard procedures such as site-directed mutagenesis or PCR. Alternatively, a polypeptide can be produced to contain one or more conservative substitutions by using standard peptide synthesis methods. An alanine scan can be used to identify which amino acid residues in a protein can tolerate an amino acid substitution. In one example, the biological activity of the protein is not decreased by more than 25%, for example not more than 20%, for example not more than 10%, when an alanine, or other conservative amino acid (such as those listed below), is substituted for one or more native amino acids.
[0310] Examples of amino acids which can be substituted for an original amino acid in a protein and which are regarded as conservative substitutions include, but are not limited to: Ser for Ala; Lys for Arg; Gln or His for Asn; Glu for Asp; Ser for Cys; Asn for Gln; Asp for Glu; Pro for Gly; Asn or Gln for His; Leu or Val for Ile; Ile or Val for Leu; Arg or Gln for Lys; Leu or Ile for Met; Met, Leu or Tyr for Phe; Thr for Ser; Ser for Thr; Tyr for Trp; Trp or Phe for Tyr; and Ile or Leu for Val.
[0311] Further information about conservative substitutions can be found in, among other locations in, Ben-Bassat et al., (J. Bacteria 169:751-7, 1987), O'Regan et al., (Gene 77:237-51, 1989), Sahin-Toth et al., (Protein Sci. 3:240-7, 1994), Hochuli et al., (Bio/Technology 6:1321-5, 1988) and in standard textbooks of genetics and molecular biology.
[0312] Ebola virus. A highly contagious hemorrhagic virus named after a river in the Democratic Republic of the Congo (formerly Zaire) in Africa, where it was first recognized. Ebola is one of two members of a family of RNA viruses called the Filoviridae. There are four identified subtypes of Ebola virus. Three of the four have caused disease in humans: Ebola-Zaire, Ebola-Sudan, and Ebola-Ivory Coast. The fourth, Ebola-Reston, has caused disease in nonhuman primates, but not in humans.
[0313] Ebola hemorrhagic fever (Ebola HF) is a severe, often fatal disease in humans and nonhuman primates (for example, monkeys, gorillas, and chimpanzees) that is caused by Ebola virus infection. Diagnosing Ebola HF in a recently infected individual can be difficult because early symptoms, such as red eyes and a skin rash, are nonspecific to the virus and are seen in other subjects with diseases that occur much more frequently. Antigen-capture enzyme-linked immunosorbent assay (ELISA) testing, IgM ELISA, PCR, and virus isolation can be used to diagnose a case of Ebola HF within a few days after the onset of symptoms. Subjects tested later in the course of the disease, or after recovery, can be tested for IgM and IgG antibodies. The disease also can be diagnosed retrospectively in deceased patients by using immunohistochemistry testing, virus isolation, or PCR.
[0314] Encodes: Unless evident from its context, includes DNA sequences that encode a polypeptide, as the term is typically used, as well as DNA sequences that are transcribed into inhibitory antisense molecules.
[0315] Expression: With respect to a gene sequence, refers to transcription of the gene and, as appropriate, translation of the resulting mRNA transcript to a protein. Thus, expression of a protein coding sequence results from transcription and translation of the coding sequence.
[0316] Functional deletion: A mutation, partial or complete deletion, insertion, or other variation made to a gene sequence that inhibits production of the gene product or renders the gene product non-functional. For example, a functional deletion of a Rab9 gene in a cell results in a cells having non-functional Rab9 protein, which results in the cell having an increase resistance to infection by a pathogen that uses a lipid raft.
[0317] Gene. A nucleic acid sequence that encodes a polypeptide under the control of a regulatory sequence, such as a promoter or operator. A gene includes an open reading frame encoding a polypeptide of the present disclosure, as well as exon and (optionally) intron sequences. An intron is a DNA sequence present in a given gene that is not translated into protein and is generally found between exons. The coding sequence of the gene is the portion transcribed and translated into a polypeptide (in vivo, in vitro or in situ) when placed under the control of an appropriate regulatory sequence. The boundaries of the coding sequence can be determined by a start codon at the 5' (amino) terminus and a stop codon at the 3' (carboxyl) terminus. If the coding sequence is intended to be expressed in a eukaryotic cell, a polyadenylation signal and transcription termination sequence can be included 3' to the coding sequence.
[0318] Transcriptional and translational control sequences include, but are not limited to, DNA regulatory sequences such as promoters, enhancers, and terminators that provide for the expression of the coding sequence, such as expression in a host cell. A polyadenylation signal is an exemplary eukaryotic control sequence. A promoter is a regulatory region capable of binding RNA polymerase and initiating transcription of a downstream (3' direction) coding sequence. Additionally, a gene can include a signal sequence at the beginning of the coding sequence of a protein to be secreted or expressed on the surface of a cell. This sequence can encode a signal peptide, N-terminal to the mature polypeptide, which directs the host cell to translocate the polypeptide.
[0319] Host Cell. Any cell that can be infected with a virus or other pathogen, such as a bacterium. A host cell can be prokaryotic or eukaryotic, such as a cell from an insect, crustacean, mammal, bird, reptile, yeast, or a bacteria such as E. coli. Exemplary host cells include, but are not limited to, mammalian B-lymphocyte cells. Examples of viruses include, but are not limited to HIV, influenza A, and Ebola.
[0320] The host cell can be part of an organism, or part of a cell culture, such as a culture of mammalian cells or a bacterial culture. A host nucleic acid is a nucleic acid present in a host cell that expresses a host protein. Decreasing or inhibiting the interaction between a host polypeptide or host nucleic acid and a virus or viral protein can occur in vitro, in vivo, and in situ environments.
[0321] Human Immunodeficiency Virus (HIV). A retrovirus that causes immunosuppression in humans and leads to a disease complex known as acquired immunodeficiency syndrome (AIDS). This immunosuppression results from a progressive depletion and functional impairment of T lymphocytes expressing the CD4 cell surface glycoprotein. The loss of CD4 helper/inducer T cell function may underlie the loss of cellular and humoral immunity leading to the opportunistic infections and malignancies seen in AIDS.
[0322] Depletion of CD4 T cells results from the ability of HIV to selectively infect, replicate in, and ultimately destroy these T cells (for example see Klatzmann et al., Science 225:59, 1984). CD4 itself is an important component, and in some examples an essential component, of the cellular receptor for HIV.
[0323] HIV subtypes can be identified by particular number, such as HIV-1 and HIV-2. In the HIV life cycle, the virus enters a host cell in at least three stages: receptor docking, viral-cell membrane fusion, and particle uptake (D'Souza et al., JAMA 284:215, 2000). Receptor docking begins with a gp120 component of a virion spike binding to the CD4 receptor on the host cell. Conformational changes in gp120 induced by gp120-CD4 interaction promote an interaction between gp120 and either CCR5 or CXCR4 cellular co-receptors. The gp41 protein then mediates fusion of the viral and target cell membranes. More detailed information about HIV can be found in Coffin et al., Retroviruses (Cold Spring Harbor Laboratory Press, 1997).
[0324] Hybridization. Hybridization of a nucleic acid occurs when two complementary nucleic acid molecules undergo an amount of hydrogen bonding to each other. The stringency of hybridization can vary according to the environmental conditions surrounding the nucleic acids, the nature of the hybridization method, and the composition and length of the nucleic acids used. For example, temperature and ionic strength (such as Na.sup.+ concentration) can affect the stringency of hybridization. Calculations regarding hybridization conditions required for attaining particular degrees of stringency are discussed in Sambrook et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001); and Tijssen, Laboratory Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Acid Probes Part I, Chapter 2 (Elsevier, N.Y., 1993).
[0325] The Tm is the temperature at which 50% of a given strand of nucleic acid is hybridized to its complementary strand. The Tm of a particular nucleic acid can be determined by various methods, such as observing the transition state between a single-stranded and double-stranded state during a temperature change, such as heating a dsDNA from about 30° C. to about 100° C., and detecting when the dsDNA denatures to ssDNA. This can be accomplished by determining a melting profile for the nucleic acid. For longer nucleic acid fragments, such as PCR products, the nearest-neighbor method can be used to determine Tm (Breslauer et al., Proc. Natl. Acad. Sci. USA 83:3746-50, 1986). Additionally, MeltCalc software can be used to determine Tm (Schutz and von Ahsen, Biotechniques 30:8018-24, 1999).
[0326] For purposes of this disclosure, "stringent conditions" encompass conditions under which hybridization only will occur if there is less than 25% mismatch between the hybridization molecule and the target sequence. "Moderate stringency" conditions are those under which molecules with more than 25% sequence mismatch will not hybridize; conditions of "medium stringency" are those under which molecules with more than 15% mismatch will not hybridize, and conditions of "high stringency" are those under which sequences with more than 10% mismatch will not hybridize. Conditions of "very high stringency" are those under which sequences with more than 5% mismatch will not hybridize.
[0327] Moderately stringent hybridization conditions are when the hybridization is performed at about 42° C. in a hybridization solution containing 25 mM KPO4 (pH 7.4), 5×SSC, 5×Denhart's solution, 50 μg/mL denatured, sonicated salmon sperm DNA, 50% formamide, 10% Dextran sulfate, and 1-15 ng/mL probe (about 5×107 cpm/m), while the washes are performed at about 50° C. with a wash solution containing 2×SSC and 0.1% sodium dodecyl sulfate.
[0328] Highly stringent hybridization conditions are when the hybridization is performed at about 42° C. in a hybridization solution containing 25 mM KPO4 (pH 7.4), 5×SSC, 5×Denhart's solution, 50 μg/mL denatured, sonicated salmon sperm DNA, 50% formamide, 10% Dextran sulfate, and 1-15 ng/mL probe (about 5×107 cpm/m), while the washes are performed at about 65° C. with a wash solution containing 0.2×SSC and 0.1% sodium dodecyl sulfate.
[0329] Infection. The entry, replication, insertion, lysis or other event or process involved with the pathogensis of a virus or other infectious agent into a host cell. Thus, decreasing infection includes decreasing entry, replication, insertion, lysis, or other pathogensis of a virus or other pathogen into a cell or subject, or combinations thereof. Infection includes the introduction of an infectious agent, such as a non-recombinant virus, recombinant virus, plasmid, bacteria, prion, eukaryotic microbe, or other agent capable of infecting a host, such as the cell of a subject.
[0330] In another example, infection is the introduction of a recombinant vector into a host cell via transduction, transformation, transfection, or other method. Vectors include, but are not limited to, viral, plasmid, cosmid, and artificial chromosome vectors. For example, a recombinant vector can include an antisense molecule, RNAi molecule, or siRNA that recognizes any target sequences associated with SEQ ID NOS: 1-227, 229, and 231, or variants, fusions, or fragments thereof, as well as SEQ ID NOS: 1-227, 229, and 231 themselves.
[0331] Influenza virus. A virus that causes respiratory disease or influenza ("the flu") and can lead to a secondary infection in the host, such as a bacterial infection of the lungs. Three types of influenza are currently known: influenza A, influenza B, and influenza C. Influenza A is the most common form of the virus and is capable of infection humans and non-human animals, such as pigs, horses, chickens, ducks and other birds.
[0332] The viral genome includes eight RNA molecules. HA, which encodes hemagglutinin (three hemagglutinin subtypes: H1, H2, and H3); M, which encodes two matrix proteins based on two different open reading frames within the nucleic acid sequence; NA encodes for neuraminidase; NP encodes the nucleoprotein; NS encodes two non-structural proteins based on different open reading frames within the nucleic acid sequence; and three genes that encode RNA polymerases (PA, PB1, PB2). The influenza virus can be categorized into subtypes on the bases of the surface glycoproteins.
[0333] The replication cycle of the influenza virus begins with binding of the viral hemagglutinin molecules to the surface carbohydrate of epithelial cell of a host cell, which draws the virus into the cell by receptor-mediated endocytosis. The viral membrane fuses with the endocytotic vesicle membrane, allowing the RNA molecules of the viral genome to enter the interior of the cell where these molecules later enter the cell nucleus and are replicated into viral-complementary RNA and new viral RNA and transcribed into viral mRNA, which are transported into the cytosol where they are translated into the proteins of new viral particles. After viral particles are assembled into new viruses, the neuraminidase glycoproteins proteins aid in the budding of the viruses from the cellular membrane of the host cell, thus releasing new viruses capable of infecting other host cells.
[0334] Isolated: An "isolated" biological component (such as a nucleic acid or protein) has been substantially separated, produced apart from, or purified away from other biological components in the cell of the organism in which the component naturally occurs, such as other chromosomal and extrachromosomal DNA and RNA, and proteins. Nucleic acids and proteins which have been "isolated" include nucleic acids and proteins purified by standard purification methods. The term also embraces nucleic acids and proteins prepared by recombinant expression in a host cell as well as chemically synthesized nucleic acids, proteins and peptides.
[0335] Nucleic acid. A deoxyribonucleotide or ribonucleotide polymer in either single (ss) or double stranded (ds) form, and can include analogues of natural nucleotides that hybridize to nucleic acids in a manner similar to naturally occurring nucleotides. In some examples, a nucleic acid is a nucleotide analog.
[0336] Unless otherwise specified, any reference to a nucleic acid molecule includes the reverse complement of nucleic acid. Except where single-strandedness is required by the text herein (for example, a ssRNA molecule), any nucleic acid written to depict only a single strand encompasses both strands of a corresponding double-stranded nucleic acid. For example, depiction of a plus-strand of a dsDNA also encompasses the complementary minus-strand of that dsDNA. Additionally, reference to the nucleic acid molecule that encodes a specific protein, or a fragment thereof, encompasses both the sense strand and its reverse complement.
[0337] In particular examples, a nucleic acid includes a nucleotide sequence shown in any of SEQ ID NOS: 1-227, 229, and 231, or a variant, fragment, or fusion thereof. In other examples, a nucleic acid has a nucleotide sequence including a target sequence associated with SEQ ID NOS: 1-227, 229, and 231, or a variant, fragment, or fusion thereof, such as the corresponding cDNA or mRNA of SEQ ID NOS: 1-227, 229, and 231.
[0338] The fragment can be any portion of the nucleic acid corresponding to at least 5 contiguous bases from any target nucleic acid sequence associated with SEQ ID NOS: 1-227, 229, and 231, for example at least 20 contiguous bases, at least 50 contiguous bases, at least 100 contiguous bases, at least 250 contiguous bases, or even at least 500 or more contiguous bases. A fragment can be chosen from a particular portion of any of the target sequences associated with SEQ ID NOS: 1-227, 229, and 231, such as a particular half, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, or smaller portion of any of the target sequences associated with SEQ ID NOS: 1-227, 229, and 231. Fragments of the nucleic acids described herein can be used as probes and primers.
[0339] Oligonucleotide. A linear polynucleotide (such as DNA or RNA) sequence of at least 9 nucleotides, for example at least 15, 18, 24, 25, 30, 50, 100, 200 or even 500 nucleotides long. In particular examples, an oligonucleotide is about 6-50 bases, for example about 10-25 bases, such as 12-20 bases.
[0340] An oligonucleotide analog refers to moieties that function similarly to oligonucleotides, but have non-naturally occurring portions. For example, oligonucleotide analogs can contain non-naturally occurring portions, such as altered sugar moieties or inter-sugar linkages, such as a phosphorothioate oligodeoxynucleotide. Functional analogs of naturally occurring polynucleotides can bind to RNA or DNA, and include peptide nucleic acid (PNA) molecules.
[0341] Open reading frame (ORF). A series of nucleotide triplets (codons) coding for amino acids without any internal termination codons. These sequences are usually translatable into a peptide.
[0342] Operably linked. A first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Generally, operably linked DNA sequences are contiguous and, where necessary to join two protein coding regions, in the same reading frame.
[0343] Pathogen: A disease-producing agent. Examples include, but are not limited to viruses, bacteria, and fungi.
[0344] Pharmaceutical agent or drug: A chemical compound or composition capable of inducing a desired therapeutic or prophylactic effect when administered to a subject, alone or in combination with another therapeutic agent(s) or pharmaceutically acceptable carriers. In a particular example, a pharmaceutical agent decreases or even inhibits infection of a cell, such as the cell of a subject, by a pathogen, such as a virus.
[0345] Polymorphism. A polymorphism exists when two or more versions of a nucleic acid sequence exist within a population of subjects. For example, a polymorphic nucleic acid can be one where the most common allele has a frequency of 99% or less. Different alleles can be identified according to differences in nucleic acid sequences, and genetic variations occurring in more than 1% of a population (which is the commonly accepted frequency for defining polymorphism) are useful polymorphisms for certain applications.
[0346] The allelic frequency (the proportion of all allele nucleic acids within a population that are of a specified type) can be determined by directly counting or estimating the number and type of alleles within a population. Polymorphisms and methods of determining allelic frequencies are discussed in Hartl, D. L. and Clark, A. G., Principles of Population Genetics, Third Edition (Sinauer Associates, Inc., Sunderland Mass., 1997), particularly in chapters 1 and 2.
[0347] Preventing or treating a disease: "Preventing" a disease refers to inhibiting the full development of a disease, for example preventing development of a viral infection. "Treatment" refers to a therapeutic intervention that ameliorates a sign or symptom of a disease or pathological condition related to a viral infection, such as inhibiting or decreasing viral infection.
[0348] Probes and primers. A probe includes an isolated nucleic acid attached to a detectable label or other reporter molecule. Typical labels include, but are not limited to radioactive isotopes, enzyme substrates, co-factors, ligands, chemiluminescent or fluorescent agents, haptens, and enzymes. Methods for labeling and guidance in the choice of labels appropriate for various purposes are discussed for example in Sambrook et al. (Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, N.Y., 1989) and Ausubel et al. (In Current Protocols in Molecular Biology, John Wiley & Sons, New York, 1998).
[0349] Primers are short nucleic acid molecules, such as DNA oligonucleotides ten nucleotides or more in length. Longer DNA oligonucleotides can be about 15, 20, 25, 30 or 50 nucleotides or more in length. Primers can be annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, and then the primer extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification of a nucleic acid sequence, for example by the polymerase chain reaction (PCR) or other nucleic-acid amplification methods.
[0350] Nucleic acid probes and primers can be prepared based on the nucleic acid molecules of the target sequences associated with SEQ ID NOS: 1-227, 229, and 231, as indicators of resistance to infection. Probes and primers can be based on fragments or portions of these nucleic acid molecules, or on the reverse complement of these sequences, as well as probes and primers to 5' or 3' regions of the nucleic acids.
[0351] The specificity of a probe or primer increases with its length. Thus, for example, a primer that includes 30 consecutive nucleotides of a β-chimerin or Rab9 gene will anneal to a target sequence, such as another homolog of a β-chimerin or Rab9 gene, respectively, with a higher specificity than a corresponding primer of only 15 nucleotides. Thus, to obtain greater specificity, probes and primers can be selected that include at least 20, 25, 30, 35, 40, 45, 50 or more consecutive nucleotides of a nucleic acid disclosed herein.
[0352] Protein coding sequence or a sequence that encodes a peptide: A nucleic acid sequence that is transcribed (in the case of DNA) and is translated (in the case of mRNA) into a peptide in vitro or in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3' (carboxy) terminus A coding sequence can include, but is not limited to, cDNA from procaryotic or eukaryotic mRNA, genomic DNA sequences from procaryotic or eukaryotic DNA, and even synthetic DNA sequences. A transcription termination sequence is usually be located 3' to the coding sequence.
[0353] Purified. The term purified does not require absolute purity; rather, it is a relative term. Thus, for example, a purified peptide preparation is one in which the peptide or protein is more enriched than the peptide or protein is in its environment within a cell, such that the peptide is substantially separated from cellular components (nucleic acids, lipids, carbohydrates, and other polypeptides) that may accompany it. In another example, a purified peptide preparation is one in which the peptide is substantially-free from contaminants, such as those that might be present following chemical synthesis of the peptide.
[0354] In one example, an peptide is purified when at least 60% by weight of a sample is composed of the peptide, for example when 75%, 95%, or 99% or more of a sample is composed of the peptide, such as a β-chimerin or Rab9 peptide. Examples of methods that can be used to purify proteins, include, but are not limited to the methods disclosed in Sambrook et al. (Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, N.Y., 1989, Ch. 17). Protein purity can be determined by, for example, polyacrylamide gel electrophoresis of a protein sample, followed by visualization of a single polypeptide band upon staining the polyacrylamide gel; high-pressure liquid chromatography; sequencing; or other conventional methods.
[0355] Rab9: The term Rab9 includes any Rab9 gene, cDNA, RNA, or protein from any organism and that is a Rab9 that can transport late endosomes to trans-golgi and function as a ras-like GTPase. In some examples, Rab9 is involved in lipid raft formation.
[0356] Examples of native Rab9 nucleic acid sequences include, but are not limited to, target sequences associated with SEQ ID NOS: 118 and 119. Examples of Rab9 amino acid sequences include, but are not limited to: Genbank Accession Nos: BC017265.2 and NM--004251.3 (cDNA) as well as P51151 and AAH17265 (proteins). In one example, a Rab9 sequence includes a full-length wild-type (or native) sequence, as well as Rab9 allelic variants, variants, fragments, homologs or fusion sequences that retain the ability to transport late endosomes to trans-golgi. In certain examples, Rab9 has at least 80% sequence identity, for example at least 85%, 90%, 95%, or 98% sequence identity to a native Rab9.
[0357] In other examples, Rab9 has a sequence that hybridizes to a sequence set forth in GenBank Accession No. BC017265.2 or NM--004251.3, and retains Rab9 activity.
[0358] Recombinant. A recombinant nucleic acid or protein is one that has a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two otherwise separated segments of sequence. This artificial combination can be accomplished, for example, by chemical synthesis or by the artificial manipulation of isolated segments of nucleic acids or proteins, for example, by genetic engineering techniques.
[0359] RNA interference (RNAi): A post-transcriptional gene silencing mechanism mediated by double-stranded RNA (dsRNA). Introduction of dsRNA into cells, such as RNAi compounds or siRNA compounds, induces targeted degradation of RNA molecules with homologous sequences. RNAi compounds are typically longer than an siRNA molecule. For example, an RNAi molecule can be at least about 25 nucleic acids, at least about 27 nucleic acids, or even at least about 400 nucleotides in length.
[0360] RNAi compounds can be used to modulate transcription, for example, by silencing genes, such as Rab9, β-chimerin, or combinations thereof. In certain examples, an RNAi molecule is directed against a certain target gene, such as Rab9, β-chimerin, or combinations thereof, and is used to decrease viral infection.
[0361] Sequence identity: The similarity between nucleic acid or amino acid sequences is expressed in terms of the similarity between the sequences. Sequence identity is frequently measured in terms of percentage identity (or similarity or homology); the higher the percentage, the more similar the two sequences are. Homologs or variants of a protein or nucleic acid disclosed herein, such as target sequences associated with SEQ ID NOS: 1-232, and their corresponding cDNA and protein sequences, will possess a relatively high degree of sequence identity when aligned using standard methods.
[0362] Methods of alignment of sequences for comparison are well known in the art. Various programs and alignment algorithms are described in: Smith and Waterman, Adv. Appl. Math. 2:482, 1981; Needleman and Wunsch, J. Mol. Biol. 48:443, 1970; Pearson and Lipman, Proc. Natl. Acad. Sci. U.S.A. 85:2444, 1988; Higgins and Sharp, Gene 73:237-44, 1988; Higgins and Sharp, CABIOS 5:151-3, 1989; Corpet et al., Nucl. Acids Res. 16:10881-90, 1988; Pearson and Lipman, Proc. Natl. Acad. Sci. U.S.A. 85:2444, 1988; and Altschul et al., Nature Genet. 6:119-29, 1994.
[0363] The NCBI Basic Local Alignment Search Tool (BLAST®) (Altschul et al., J. Mol. Biol. 215:403-10, 1990) is available from several sources, including the National Center for Biotechnology Information (NCBI, Bethesda, Md.) and on the Internet, for use in connection with the sequence analysis programs blastp, blastn, blastx, tblastn and tblastx.
[0364] Variants of a peptide, such as a peptide encoded by any target sequence associated with SEQ ID NOS: 1-227, 229, and 231, as well as any target sequence associated with SEQ ID NOS: 228, 230, and 232, are typically characterized by possession of at least 70% sequence identity counted over the full length alignment with the amino acid sequence encoded by any target sequence associated with SEQ ID NOS: 1-227, 229, or 231, using the NCBI Blast 2.0, gapped blastp set to default parameters. For comparisons of amino acid sequences of greater than about 30 amino acids, the Blast 2 sequences function is employed using the default BLOSUM62 matrix set to default parameters, (gap existence cost of 11, and a per residue gap cost of 1). When aligning short peptides (fewer than around 30 amino acids), the alignment is performed using the Blast 2 sequences function, employing the PAM30 matrix set to default parameters (open gap 9, extension gap 1 penalties). Proteins with even greater similarity to the reference sequences will show increasing percentage identities when assessed by this method, such as at least 80%, at least 90%, at least 95%, at least 98%, or even at least 99% sequence identity. When less than the entire sequence is being compared for sequence identity, homologs and variants will typically possess at least 80% sequence identity over short windows of 10-20 amino acids, and may possess sequence identities of at least 85%, at least 90%, at least 95%, or at least 98% depending on their similarity to the reference sequence. Methods for determining sequence identity over such short windows are described at the website that is maintained by the National Center for Biotechnology Information in Bethesda, Md. One of skill in the art will appreciate that these sequence identity ranges are provided for guidance only; it is entirely possible that strongly significant homologs could be obtained that fall outside of the ranges provided.
[0365] Similar methods can be used to determine the sequence identity between two or more nucleic acids. To compare two nucleic acid sequences, the BLASTN options can be set as follows: -i is set to a file containing the first nucleic acid sequence to be compared (such as C:\seq1.txt); -j is set to a file containing the second nucleic acid sequence to be compared (such as C:\seq2.txt); -p is set to blastn; -o is set to any desired file name (such as C:\output.txt); -q is set to -1; -r is set to 2; and all other options are left at their default setting. For example, the following command can be used to generate an output file containing a comparison between two sequences: C:\B12seq-i c:\seq1.txt-j c:\seq2.txt-p blastn-o c:\output.txt-q-1-r 2.
[0366] Once aligned, the number of matches is determined by counting the number of positions where an identical nucleotide or amino acid residue is presented in both sequences. The percent sequence identity is determined by dividing the number of matches either by the length of the sequence set forth in the identified sequence, or by an articulated length (for example, 100 consecutive nucleotides or amino acid residues from a sequence set forth in an identified sequence), followed by multiplying the resulting value by 100. For example, a nucleic acid sequence that has 1166 matches when aligned with a test sequence having 1154 nucleotides is 75.0 percent identical to the test sequence (for example, 1166/1554*100=75.0). The percent sequence identity value is rounded to the nearest tenth. For example, 75.11, 75.12, 75.13, and 75.14 are rounded down to 75.1, while 75.15, 75.16, 75.17, 75.18, and 75.19 are rounded up to 75.2. The length value will always be an integer. In another example, a target sequence containing a 20-nucleotide region that aligns with 20 consecutive nucleotides from an identified sequence contains a region that shares 75 percent sequence identity to that identified sequence (for example, 15/20*100=75).
[0367] The nucleic acids disclosed herein include nucleic acids have nucleotide sequences that are at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or at least 99% identical to the nucleotide sequence of any target sequence associated with SEQ ID NOS: 1-227, 229, and 231. In particular examples, a nucleic acid is substantially similar to the nucleotide sequence of any target sequence associated with SEQ ID NOS: 1-227, 229, and 231. A first nucleic acid is "substantially similar" to a second nucleic acid if, when the first nucleic acid is optimally aligned (with appropriate nucleotide deletions or gap insertions) with the second nucleic acid (or its complementary strand) and there is nucleotide sequence identity of at least about 90%, for example at least about 95%, at least 98% or at least 99% identity. An alternative indication that two nucleic acid molecules are closely related is that the two molecules hybridize to each other under stringent conditions.
[0368] Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences, due to the degeneracy of the genetic code. It is understood that changes in nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid molecules that all encode substantially the same protein.
[0369] Short interfering or interrupting RNA (siRNA). Double-stranded RNAs that can induce sequence-specific post-transcriptional gene silencing, thereby decreasing or even inhibiting gene expression. In some examples, siRNA molecules are about 19-23 nucleotides in length, such as at least 21 nucleotides, for example at least 23 nucleotides.
[0370] In one example, siRNA triggers the specific degradation of homologous RNA molecules, such as mRNAs, within the region of sequence identity between both the siRNA and the target RNA. For example, WO 02/44321 discloses siRNAs capable of sequence-specific degradation of target mRNAs when base-paired with 3' overhanging ends. The direction of dsRNA processing determines whether a sense or an antisense target RNA can be cleaved by the produced siRNA endonuclease complex. Thus, siRNAs can be used to modulate transcription, for example, by silencing genes, such as Rab9, β-chimerin, or combinations thereof. The effects of siRNAs have been demonstrated in cells from a variety of organisms, including Drosophila, C. elegans, insects, frogs, plants, fungi, mice and humans (for example, WO 02/44321; Gitlin et al., Nature 418:430-4, 2002; Caplen et al., Proc. Natl. Acad. Sci. 98:9742-9747, 2001; and Elbashir et al., Nature 411:494-8, 2001).
[0371] In certain examples, siRNAs are directed against certain target genes, such as Rab9, β-chimerin, or combinations thereof, to confirm results of the gene-trap method used against the same nucleic acid sequence.
[0372] Specific binding agent. An agent that binds substantially only to a defined target. For example, a protein-specific binding agent binds substantially only the specified protein and a nucleic acid specific binding agent binds substantially only the specified nucleic acid.
[0373] As used herein, the term "protein [α] specific binding agent" includes anti-[X] protein antibodies (including polyclonal or monoclonal antibodies and functional fragments thereof) and other agents (such as soluble receptors) that bind substantially only to the [α] protein. In this context, [α] refers to any specific or designated protein, for instance β-chimerin, Rab9, or any protein listed in Table 1 or encoded by a target sequence associated with SEQ ID NOS: 1-227, 229, and 231 (including variants, fragments, and fusions thereof).
[0374] Anti-[X] protein antibodies can be produced using standard procedures such as those described in Harlow and Lane (Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 1998). Antibodies can be polyclonal or monoclonal antibodies, humanized antibodies, Fab fragments, F(ab')2 fragments, single chain antibodies, or chimeric antibodies. For example, polyclonal antibodies can be produced by immunizing a host animal by injection with polypeptides described herein, including the target sequences associated with SEQ ID NOS: 1-227, 229, 231 (or variants, fragments, or fusions thereof). The production of monoclonal antibodies can be accomplished by a variety of methods, such as the hybridoma technique (Kohler and Milstein, Nature 256:495-7, 1975), the human B-cell technique (Kosbor et al., Immunology Today 4:72, 1983), or the EBV-hybridoma technique (Cole et al., in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96, 1983). Additionally, chimeric antibodies can be produced (for example, see Morrison et al., J. Bacteriol. 159:870, 1984; Neuberger et al., Nature 312:604-8, 1984; and Takeda et al., Nature 314:452-4, 1985), as well as single-chain antibodies (for example, see U.S. Pat. Nos. 5,476,786; 5,132,405; and 4,946,778).
[0375] The determination that a particular agent binds substantially only to the specified protein readily can be made by using or adapting routine procedures. For example, Western blotting can be used to determine that a given protein binding agent, such as an anti-[X] protein monoclonal antibody, binds substantially only to the [α] protein. Other assays include, but are not limited to, competitive and non-competitive homogenous and heterogeneous enzyme-linked immunosorbent assays (ELISA) as symmetrical or asymmetrical direct or indirect detection formats; "sandwich" immunoassays; immunodiffusion assays; in situ immunoassays (for example, using colloidal gold, enzyme or radioisotope labels); agglutination assays; complement fixing assays; immunoelectrophorectic assays; enzyme-linked immunospot assays (ELISPOT); radioallergosorbent tests (RAST); fluorescent tests, such as used in fluorescent microscopy and flow cytometry; Western, grid, dot or tissue blots; dip-stick assays; halogen assays; or antibody arrays (for example, see O'Meara and Tovey, Clin. Rev. Allergy Immunol., 18:341-95, 2000; Sambrook et al., 2001, Appendix 9; Simonnet and Guilloteau, in: Methods of Immunological Analysis, Masseyeff et al. (Eds.), VCH, New York, 1993, pp. 270-388).
[0376] A specific binding agent also can be labeled for direct detection (see Chapter 9, Harlow and Lane, Antibodies: A Laboratory Manual. 1988). Suitable labels include (but are not limited to) enzymes (such as alkaline phosphatase (AP) or horseradish peroxidase (HRP)), fluorescent labels, colorimetric labels, radioisotopes, chelating agents, dyes, colloidal gold, ligands (such as biotin), and chemiluminescent agents.
[0377] Shorter fragments of antibodies can also serve as specific binding agents. For instance, Fabs, Fvs, and single-chain Fvs (SCFvs) that bind to a specified protein would be specific binding agents. These antibody fragments include: (1) Fab, the fragment containing a monovalent antigen-binding fragment of an antibody molecule produced by digestion of whole antibody with the enzyme papain to yield an intact light chain and a portion of one heavy chain; (2) Fab', the fragment of an antibody molecule obtained by treating whole antibody with pepsin, followed by reduction, to yield an intact light chain and a portion of the heavy chain; two Fab' fragments are obtained per antibody molecule; (3) (Fab')2, the fragment of the antibody obtained by treating whole antibody with the enzyme pepsin without subsequent reduction; (4) F(ab')2, a dimer of two Fab' fragments held together by two disulfide bonds; (5) Fv, a genetically engineered fragment containing the variable region of the light chain and the variable region of the heavy chain expressed as two chains; and (6) single chain antibody ("SCA"), a genetically engineered molecule containing the variable region of the light chain, the variable region of the heavy chain, linked by a suitable polypeptide linker as a genetically fused single chain molecule. Methods of making these fragments are routine. For example, construction of Fab expression libraries permits the rapid and easy identification of monoclonal Fab fragments with the desired specificity for a protein described herein.
[0378] Subject: Living multi-cellular vertebrate organisms, including human and veterinary subjects, such as cows, pigs, horses, dogs, cats, birds, reptiles, and fish.
[0379] Target sequences associated with SEQ ID NO: When used herein, this phrase refers to any nucleic acid sequence, amino acid sequence, or combination of nucleic acid and amino acid sequences, that are involved in viral infection, and therefore serve as targets for inhibiting viral infection, and which are or include a specified SEQ ID NO, are involved in the expression of the SEQ ID NO, or are peptide (including protein) sequences that are expressed by such specified SEQ ID NO. Although a target sequence may refer to a SEQ ID NO of a sequence obtained from a particular species, the target sequences also include homologues of the sequence from other related species, such as other mammals. For example, the phrase "target sequences associated with SEQ ID NO. X" can refer to the entire gene sequence of which the particular SEQ ID NO X is a part, the appropriate coding sequence, a promoter sequence associated with the gene, or the corresponding protein sequence, as well as variants, fragments, homologues, and fusions thereof that retain the activity of the native sequence. For example, when using the phrase "sequences associated with SEQ ID NOS: 21-22," this term encompases β-chimerin genomic sequences, endogenous promoter sequences that promote the expression of β-chimerin, coding sequences, and β-chimerin proteins, as well as variants, fragments homologues and fusions thereof that retain the activity of the native sequence. A particular cDNA sequence associated with SEQ ID NOS: 21-22 is provided in GenBank Accession No. NM--004067, and a particular protein sequence associated with SEQ ID NOS: 21-22 is provided in NP--004058.1.
[0380] The term "a GenBank Accession No. associated with SEQ ID NO. X" refers to a GenBank Accession No. that includes SEQ ID NO. X, or is a homolog of SEQ ID NO: X from another mammal, for example a human homolog. The GenBank Accession No. may, in some examples, also identify a coding sequence of an open reading frame, and the sequence of the protein encoded by SEQ ID NO. X.
[0381] Although sequences are provided herein that encode (or are included within sequences that encode) host proteins that are involved in viral infection, it should be understood that the ultimate goal is to interfere with the activity of the protein that has been identified to be involved in viral pathogenesis. Such interference can be at either the level of the nucleic acid that encodes the protein (for example by reducing or otherwise disrupting expression of the protein), or at the level of the protein itself (for example by interfering with the activity of the protein, or its interaction with the virus). The disclosure of specific techniques for achieving these goals in particular species should not be interpreted to limit the method to these particular techniques, or to particular species in which the viral interaction is first identified. The identification of the viral interaction in one species indicates the importance of the interaction between the virus and the protein in that species, as well as the interaction of the virus with homologues of that protein in other species.
[0382] Target sequence of a nucleic acid: A portion of a nucleic acid that, upon hybridization to a therapeutically effective oligonucleotide or oligonucleotide analog, results in reduction or even inhibition of infection by an infectious agent. An antisense or a sense molecule can be used to target a portion of dsDNA, since either can interfere with the expression of that portion of the dsDNA. The antisense molecule can bind to the plus strand, and the sense molecule can bind to the minus strand. Thus, target sequences can be ssDNA, dsDNA, and RNA.
[0383] Therapeutically active molecule: An agent, such as a protein, antibody or nucleic acid, that can decrease expression of a host protein involved in viral infection (such as those listed in Table 1 or target sequences associated with any of SEQ ID NOS: 1-232, or can decrease an interaction between a host protein involved in viral infection and a viral protein, such as HIV, Ebola, or influenza A, as measured by clinical response (for example, a decrease in infection by a virus, such as an inhibition of infection). Therapeutically active agents also include organic or other chemical compounds that mimic the effects of the therapeutically effective peptide or nucleic acids.
[0384] Therapeutically Effective Amount: An amount of a pharmaceutical preparation that alone, or together with an additional therapeutic agent(s), induces the desired response. The preparations disclosed herein are administered in therapeutically effective amounts.
[0385] In one example, a desired response is to decrease or inhibit viral infection of a cell, such as a cell of a subject. Viral infection does not need to be completely inhibited for the pharmaceutical preparation to be effective. For example, a pharmaceutical preparation can decrease viral infection by a desired amount, for example by at least 20%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 98%, or even at least 100%, as compared to an amount of viral infection in the absence of the pharmaceutical preparation.
[0386] This decrease or inhibition can result in halting or slowing the progression of, or inducing a regression of a pathological condition caused by the viral infection, or which is capable of relieving signs or symptoms caused by the condition.
[0387] In another or additional example, it is an amount sufficient to partially or completely alleviate symptoms of viral infection within a host subject. Treatment can involve only slowing the progression of the infection temporarily, but can also include halting or reversing the progression of the infection permanently.
[0388] Effective amounts of the therapeutic agents described herein can be determined in many different ways, such as assaying for a reduction in the rate of infection of cells or subjects, a reduction in the viral load within a host, improvement of physiological condition of an infected subject, or increased resistance to infection following exposure to the virus. Effective amounts also can be determined through various in vitro, in vivo or in situ assays, including the assays described herein.
[0389] The disclosed therapeutic agents can be administered in a single dose, or in several doses, for example daily, during a course of treatment. However, the effective amount of can be dependent on the source applied (for example a nucleic acid isolated from a cellular extract versus a chemically synthesized and purified nucleic acid), the subject being treated, the severity and type of the condition being treated, and the manner of administration. In addition, the disclosed therapeutic agents can be administered alone, or in the presence of a pharmaceutically acceptable carrier, or in the presence of other therapeutic agents, for example other anti-viral agents.
[0390] Transduced and Transformed: A virus or vector "transduces" or "transfects" a cell when it transfers nucleic acid into the cell. A cell is "transformed" by a nucleic acid transduced into the cell when the DNA becomes stably replicated by the cell, either by incorporation of the nucleic acid into the cellular genome, or by episomal replication. As used herein, the term transformation encompasses all techniques by which a nucleic acid molecule might be introduced into such a cell, including transfection with viral vectors, transformation with plasmid vectors, and introduction of naked DNA by electroporation, lipofection, and particle gun acceleration.
[0391] Transfected: A transfected cell is a cell into which has been introduced a nucleic acid molecule by molecular biology techniques. The term transfection encompasses all techniques by which a nucleic acid molecule can be introduced into such a cell, including transfection with viral vectors, transformation with plasmid vectors, and introduction of naked DNA by electroporation, lipofection, and particle gun acceleration.
[0392] Transgene: An exogenous nucleic acid sequence supplied by a vector. In one example, a transgene includes any target sequence associated with SEQ ID NOS: 1-227, 229, 231 (or variants, fragments, or fusions thereof), for example a nucleic acid that encodes a beta-chimerin or Rab9.
[0393] Variants, fragments or fusions: The disclosed nucleic acid sequences, such as target sequences associated with SEQ ID NOS: 1-227, 229, and 231, and the proteins encoded thereby, include variants, fragments, and fusions thereof that retain the native biological activity (such as playing a role in viral infection). DNA sequences which encode for a protein or fusion thereof, or a fragment or variant of thereof can be engineered to allow the protein to be expressed in eukaryotic cells or organisms, bacteria, insects, and/or plants. To obtain expression, the DNA sequence can be altered and operably linked to other regulatory sequences. The final product, which contains the regulatory sequences and the therapeutic protein, is referred to as a vector. This vector can be introduced into eukaryotic, bacteria, insect, and/or plant cells. Once inside the cell the vector allows the protein to be produced.
[0394] One of ordinary skill in the art will appreciate that the DNA can be altered in numerous ways without affecting the biological activity of the encoded protein. For example, PCR can be used to produce variations in the DNA sequence which encodes a protein. Such variants can be variants optimized for codon preference in a host cell used to express the protein, or other sequence changes that facilitate expression.
[0395] Vector: A nucleic acid molecule as introduced into a host cell, thereby producing a transformed host cell. A vector can include nucleic acid sequences that permit it to replicate in a host cell, such as an origin of replication, and can also include one or more selectable marker genes and other genetic elements. An insertional vector is capable of inserting itself into a host nucleic acid. For example, recombinant lambda-phage vectors of host genomes (Coffin et al., Retroviruses, Chapter 5).
[0396] Wild-type. A naturally occurring, non-mutated version of a nucleic acid sequence. Among multiple alleles, the allele with the greatest frequency within the population is usually (but not necessarily) the wild-type. The term "native" can be used as a synonym for "wild-type."
[0397] Nucleic Acids and Proteins Involved in Viral Infection Examples of host nucleic acids and proteins that play a role in viral infection have been identified and are summarized in Table 1. These nucleic acids and proteins offer new targets for therapies that reduce or even inhibit or prevent viral infection, and offer new strategies for assessing the risk of infection among certain populations. While the target genes were identified in an assay using the recited virus, it is appreciated that infections agents such as viruses will share common pathways. Thus, the host sequences set forth below can be interfered with to decrease infection in a host cell.
[0398] Examples of viruses that can be inhibited are described in Virology, Volumes 1 and 2 by Bernard Fields, Second Edition, 1990, Raven Press. Exemplary viruses include, but are not limited to members of the family. Picornaviridae (such as Poliovirus, Coxsackievirus, Echovirus, Rhinovirus, and Hepatitis A and E); Calciviridae (such as Norwalk and related viruses); Togaviridae and Flavivirdae (such as hepatitis C, Alphavirus, and Rubella); Coronaviridae (such as SARS); Rhabdoviridae (such as Rabies); Filoviridae (such as Marburg and Ebola); Paramyxoviridae (such as Parainfluenza, Mumps, Measles, Hydra and Respiratory Synctial virus); Orthomyxoviridae; Bunyaviridae (including all subtypes and strains); Arenaviridae (such as lymphocytic choreomeningitis virus and lassa fever and related viruses); Reoviridae (such as Reovirus and Rotavirus); Retroviridae (such as HTLV, HIV, and Lentivirus); Papoviridae (such as Polyoma and Papilloma); Adenoviridae (such as Adenovirus); Parvoviridae (such as Parvovirus); Herpesviridae (such as Herpes 1 and 2, Cytomegalovirus, Varicella-Zoster, Kaposi sarcoma related virus (HHV9), Epstein Ban Virus, and HHV6-7 (roseolavirus)); Poxyiridae (such as Pox); Hepadnaviridae (such as Hepatitis B); as well as Hepatitis D virus, Hanta virus, and newly identified infectious agents.
TABLE-US-00001 TABLE 1 Examples of Host Genes and Protiens Implicated in Pathogenesis GenBank SEQ Accession Associated ID Nos for cDNA Nucleic Acid or Protein Virus NO: and Protein T-cell receptor V beta chain HIV 1-19 T-cell receptor V-D-J beta 2.1 chain HIV 20 β-chimerin (CHN2) HIV 21-22 NM_004067; NP_004058.1 Malic enzyme 1 (ME1) HIV and 23 BC025246; Influenza A AAH25246.1 Hypothetical protein XP_174419 HIV and 24 Influenza A sequence from Chromosome 4q31.3-32 HIV and 25-27 Influenza A alpha satellite DNA HIV 28 LOC253788 and LOC219938; HIV 29 coagulation factor III (F3) and LOC91759 similar to KOX4 (LOC131880) and HIV 30 LOC166140 LOC222474 and similar to Rho HIV 31 guanine nucleotide exchange factor 4, isoform a, APC-stimulated guanine nucleotide exchange factor (LOC221178); T-cell receptor beta ribosomal protein L7A-like 4 HIV 32 (RPL7AL4) and v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) (SRC) KIAA0564 HIV 33 alpha satellite DNA; M96 protein HIV 34 hypothetical protein similar to G HIV 35 proteins, especially RAP-2A (LOC57826); LOC161005 and osteoblast specific factor 2 (fasciclin I-like; OSF-2) Canis familiaris T-cell leukemia Influenza A 36-37 translocation-associated (TCTA) gene, aminomethyltransferase (AMT) gene, dystroglycan (DAG1) gene, and bassoon (BSN) gene LIM domain containing preferred Influenza A 38-48 translocation partner in lipoma (LPP) sequence between LOC253121 and Influenza A 49 hyaluronan synthase 2 (HAS2) Testin 2 and Testin 3 (TES) Influenza A 50-57 PTPN1 gene for protein tyrosine Influenza A 58-59 phosphatase, non-receptor type 1 sequence between LOC149360 and Influenza A 60 LOC253961 sequence between KIAA1560 and Influenza A 61 Tectorin beta (TECTB) Cadherin related 23 (CDH23) Influenza A 62 BC032581; AAH32581.1 Myeloid/lymphoma or mixed lineage Influenza A 63 leukemia, translocated to 10 (MMLT10) exportin 5 (XPO5) and DNA Ebola 64-66 polymerase eta (POLH) heterogenous nuclear riboprotein C Ebola 67-75 (C1/C2) (HNRPC) alpha-endosulfine pseudogene Ebola 76 (ENSAP) and LOC128741 LOC222888 Ebola 77 LOC138421 and zinc finger protein Ebola 78 297B (ZNF297B) sideroflexin 5 (SFXN5) Ebola 79 AY044437; AAK95826 importin 9 (FLJ10402) Ebola 80 T-cell receptor beta Ebola 81-82 similar to murine putative transcription Ebola 83-99 factor ZNF131 (LOC135952) KIAA1259 Ebola 100-101 AB033085; NP_115572 MURR1 and CCT4 Ebola 102 FLJ40773 and similar to ribosomal Ebola 103 protein L24-like (LOC149360) Testin 2 and 3 (TES) Ebola 104-107 See above polybromo 1 (PB1) Ebola 108 NM_018165.2; NP_060635 DNA damage inducible transcript 3 Ebola 109 (DDIT3) and KIAA1887 PDZ and LIM domain 1 (elfin) Ebola 110 (PDLIM1) LOC284803 Ebola 111-112 PRO0097 and FLJ31958 Ebola 113 small inducible cytokine E, member 1 Ebola 114-116 (endothelial monocyte-activating) (SCYE1) E3 ubiquitin ligase (SMURF2) and Ebola 117-119 MGC40489 Ras oncogene family member Rab9 Ebola 118-119 PRO1617 and retinoblastoma binding Ebola 120-122 NM_000321; protein 1 (RBBP1) NP_000312.1 region of chromosome 2q12 Ebola 123 elongation factor for selenoprotein Ebola 124 NM_021937.1 translation NP_068756.1 Transcription factor SMIF (HSA275986) Ebola 125-137 KIAA1026 Ebola 138 trinucleotide repeat containing 5 Ebola 139 (TNRC5) homogentisate 1,2-dioxygenase (HGD) Ebola 140 region of chromosome Xq23-24 Ebola 141 region of chromosome 4p15.3 Ebola 142 similar to LWamide neuropeptide Ebola 143 precursor protein [Hydractinia echinata] (LOC129883) region of chromosome 2q21 Ebola 144 region of chromosome Xp11.4, Ebola 145 including UPS9X LOC221829 Ebola 146 U3 small nuclear RNA Ebola 147-154 integrin, beta 1 (ITGB1) Ebola 155-158 BC020057; AAH20057.1 acrosomal vesicle protein 1 (ACRV1) Ebola 159 and CHK1 checkpoint homolog (CHEK1) prospero-related homeobox 1 (PROX1) Ebola 160 FLJ20627 and FLJ12910 Ebola 161-173 PIN2-interacting protein (PINX1) and Ebola 174 SRY (sex-determining region Y)-box 7 (SOX7) LOC131920 Ebola 175 region of chromosome 13q14 Ebola 176 neurotrophic tyrosine kinase, receptor, Ebola 177 type 3 (NTRK3) TERA protein and FLJ13224 Ebola 178-179 LOC284260 Ebola 180 POM (POM121 homolog) and ZP3 Ebola 181-182 fusion (POMZP3) DEAD/H box polypeptide 8 (DDX8) Ebola 183 and similar to ribosomal protein L29 (cell surface heparin binding protein HIP) (LOC284064) LOC345307 and UDP-N-acetyl-D- Ebola 184-186 galactosamine: polypeptide N- acetylgalactosaminyltransferase 7 (GALNT7) Mus musculus 5S rRNA pseudogene Ebola 187 (Rn5s-ps1) ribosomal protein L27a pseudogene Ebola 188-192 (RPL27AP) and v-myb myeloblastosis viral oncogene homolog-like 2 (MYBL2) Down's syndrome cell adhesion Ebola 193 molecule like 1 (DSCAML1) LOC148529 Ebola 194 Huntingtin-associated protein Ebola 195 NM_005338.4; interacting protein (HAPIP) NP_005329.3 LOC158525 and similar to RIKEN Ebola 196-200 cDNA 1210001E11 (LOC347366) hypothetical protein FLJ12910 Ebola 201-204 LOC350411 Ebola 205 allograft inflammatory factor 1 (AIF1) Ebola 206 and HLA-B associated transcript 2 (BAT2) C10orf7 Ebola 207 LOC346658 and LOC340349 Ebola 208-209 region of chromosome 12q21 Ebola 210 LOC339248 and FLJ22659 Ebola 211 SR rich protein DKFZp564B0769 and Ebola 212 hypothetical protein MGC14793 FLJ10439 Ebola 213-214 NM_018093.1; NP_060563.1 cytochrome P450, family 11, Ebola 215-218 subfamily A, polypeptide 1 (CYP11A1) and sema domain, immunoglobulin domain (Ig) and GPI membrane anchor, (semaphoring) 7A ribosomal protein S16 (RPS16) Ebola 219-220 BC004324.2; AAH04324.1 hypothetical protein DKFZp434H0115 Ebola 221-222 and ATP citrate lyase (ACLY) calnexin (CANX); protein tyrosine Ebola 223-224 phosphatase, receptor type, K (PTPRK) cyclin M2 (CNNM2) Ebola 225 NM_017649.2; NP_060119.2 AXL receptor tyrosine kinase (AXL) Ebola 226 BC032229; AAH32229.1 Homo sapiens chromosome 10 open Ebola 227-228 reading frame 3 Homo sapiens chromosome 10 open Ebola 229-230 reading frame 3 (C10orf3) Homo sapiens fer-1-like 3, myoferlin Ebola 231-232 NM_013451.; (C. elegans) NP_038479.1
[0399] Some of the host nucleic acids described in Table 1 and target sequences associated with SEQ ID NOS: 1-227, 229, and 231 encode polypeptides that are receptors or ligands recognized by a particular virus, such as HIV, influenza A, or the Ebola virus. For example, the T-cell receptor V beta and V-D-J beta 2.1 chain polypeptides are part of the T-cell receptor complex that are recognized by certain glycoproteins in the HIV envelope. Other host nucleic acids encode polypeptides that provide an enzymatic function related to a viral life cycle, such as the signaling pathways controlling viral packaging or enzymes involved in viral replications. For example, the β-chimerin rho-GTPase may mediate a cellular signal that initiates or triggers a process leading to passage of an HIV viral particle into the host cell. The data presented herein indicate that Rab9 is involved in pathogen infectivity, for example by interfering with trafficking of proteins and lipids within cells. In particular examples, it is demonstrated that Rab9 is involved in lipid raft formation, and that decreasing functional Rab9 and lipid rafts decreases the ability of pathogens, such as viruses and bacteria, that hijack lipid rafts to bud or be infectious.
[0400] Still other host nucleic acids participate in the life cycle of a virus. For example, a certain nucleotide sequence of a host nucleic acid, such as a gene within the host genome can be recognized during insertion and integration of a viral genome (reverse transcribed into DNA from the viral RNA genomic template) into the host genome. Viral integration is described in, for example, Coffin et al., Retroviruses, Chapter 5.
[0401] The nucleic acids and proteins disclosed herein can be identified, isolated, and characterized using any number of techniques of molecular biology, including the specific methods and protocols described herein, such as in the examples below. In some examples, the nucleic acids were identified and isolated using the Lexicon Genetics, Inc. (The Woodlands, Tex.) "gene trap" technology disclosed in U.S. Pat. Nos. 6,080,576; 6,136,566; 6,207,371; 6,139,833; 6,218,123 and 6,448,000.
[0402] Gene trap technology is a powerful method for cloning and identifying functional genes, as it marks a gene with a tag and simultaneously generates a corresponding genetic variation for that particular locus. The method involves introducing into a cell a DNA construct that can monitor and potentially disrupt the transcriptional activity of the region of the cell's genome into which it is inserted. The gene-trap method used to identify the host sequences is disclosed in U.S. Pat. No. 6,448,000 (herein incorporated by reference).
[0403] Briefly, the gene trap protocol involves infecting a host cell (for example, a cell of a Sup T-1 cell line (human), MDCK cells (canine), or Vero cells (monkey)) with a recombinant vector (for example, U3neoSV1, FIG. 1). The recombinant vector includes a selectable marker or other sequence capable of being used to select infected host cells. However, the selectable marker or other sequence does not have a promoter at its 5' end. An exemplary selectable marker is a nucleic acid encoding resistance to an antibiotic (such as neomycin). A summary of the gene trap method is provided in FIGS. 2 and 3. Infection of the host cell is performed in culture under conditions that yield about one copy of the vector per cell. The vector incorporates into the host cell genome adjacent to an active promoter and interrupts or disrupts the transcription of a nucleic acid in the host cell (FIG. 2). The host promoter drives expression of the selectable marker or other sequence on the vector, and infected cells can then be selected. For example, if the vector carries a nucleic acid encoding neomycin resistance, cells can be selected on a medium that contains neomycin or G418, the neomycin analog for mammalian cells, depending on the type of host cell used.
[0404] The selected host cells are expanded in culture to form a library of cells that contain randomly disrupted host genes (FIG. 3). An aliquot of the library of cells is exposed to the appropriate virus, such as HIV, influenza A, or Ebola, to determine the effect of the disrupted host sequence on viral infection of the host cells. Host cells that survive the viral infection, or are relatively resistant to such infection (such as those cells that survive for a longer period of time than about at least 50% of the infected cells), can include one or more disrupted genes involved in viral infection. Thus, by using the vector one can decrease viral or pathogenic infection of a host cell or in a subject. Therefore, by identifying these disrupted genes that decreased or otherwise interfered with viral infection of the host cell, candidate sequences are identified that can be used as targets to decrease or inhibit viral infection.
[0405] Those host cells that survive viral infection, or are relatively resistant to such infection, are cloned, for example, by limit dilution using a chambered plate or by growth on methylcellulose. The interrupted host nucleic acid is identified using standard molecular biology methods. For example, host DNA can be isolated from the cell and digested using an appropriate restriction enzyme to free the 5' and 3' sequences adjacent the incorporated vector. The isolated DNA fragment can then be amplified, for example using PCR or by introducing the DNA fragment into a bacterial host cell then growing the bacteria. Once isolated, the host nucleic acid can be further characterized and analyzed. For example, the nucleic acid can be sequenced and compared to other similar nucleic acids. Methods of using these nucleic acids, and the proteins encoded thereby, are discussed below.
[0406] Using these gene trap methods, several host molecules were identified that were previously not known to be involved in viral pathogenesis (SEQ ID NOS: 1-232, Table 1, and target sequences associated with SEQ ID NOS: 1-232). For example, the AMT gene (target sequences associated with SEQ ID NOS: 36 and 37) participates in influenza A infection of host cells. Fragments of host sequences involved in viral infection and pathogenesis can now be identified, even including fragments or sequences that were previously known to be important in the pathogenesis of intracellular pathogens. For example, although the T-cell receptor was previously implicated in HIV infection, the results disclosed herein demonstrate that the T-cell receptor V-D-J beta 2.1 chain (target sequences associated with SEQ ID NO: 20) is involved and in some examples required for HIV infection, and host cells lacking the T-cell receptor V-D-J beta 2.1 chain are unexpectedly highly resistant to HIV infection. Hence the V-D-J beta 2.1 chain is a target for anti-viral therapy at the DNA or polypeptide level, and other pathogenically active subcomponents of other known pathogenic sequences can also be identified with this method.
[0407] Examples of these host nucleic acid molecules are target sequences associated with SEQ ID NOS: 1-227, 229, and 231 (including variants, fragments, and fusions thereof) and summarized in Table 1. In addition to these specifically disclosed nucleotide sequences, a host nucleic acid can include nucleotide sequences that are similar to any of the target sequences associated with SEQ ID NOS: 1-227, 229, and 231, such as having at least 70% identity, at least 80% identity, at least 85% identity, at least 90% identity, at least 95% identity, at least 98% identity, or even at least 99% identity to any of the target sequences associated with SEQ ID NOS: 1-227, 229, and 231. The disclosed host nucleic acid sequences, and methods of using them, may comprise, consist, or consist essentially of any of the disclosed nucleic acid sequences shown in SEQ ID NOS: 1-227, 229, and 231, as well as target sequences associated with SEQ ID NOS: 1-227, 229, and 231, or variants or fragments thereof, or sequences that hybridize to the identified sequences under stringent or moderately stringent conditions.
[0408] The host nucleic acid molecules also include a fragment of any target sequence associated with SEQ ID NOS: 1-227, 229, and 231, such as a probe or primer as described below.
[0409] Host polypeptides corresponding to these nucleic acids also can be used to practice the disclosed methods. In some examples, the polypeptide includes an amino acid sequence that corresponds to a coding sequence of any target sequence associated with SEQ ID NOS: 1-227, 229, and 231, or a target protein sequence associated with SEQ ID NOS: 228, 230, and 232. However, host polypeptides can also include those having similar amino acid sequences, such as polypeptides that are at least 70% identical, at least 80% identical, at least 90% identical, at least 95% identical, at least 98% identical, or at least 99% identical to the amino acid sequences corresponding to translations of the coding sequence of any target sequence associated with SEQ ID NOS: 1-227, 229, and 231, or a target protein sequence associated with SEQ ID NOS: 228, 230, and 232. For example, the disclosed host polypeptides and methods of using them, may comprise, consist, or consist essentially of an amino acid sequence corresponding to a translation of the nucleotide sequence in any target sequence associated with SEQ ID NOS: 1-227, 229, and 231, a target protein sequence associated with SEQ ID NOS: 228, 230, and 232, or any of the protein sequences listed in Table 1. Alternatively, the polypeptides include homologous polypeptides from other mammals (for example human, monkeys, and dogs).
[0410] The host polypeptide can have an amino acid sequence that varies by one or more conservative substitutions from the amino acid sequences of the proteins encoded by target sequences associated with SEQ ID NOS: 1-227, 229, and 231, or from the target amino acid sequences associated with SEQ ID NOS: 228, 230, and 232. In one example, there is no more than 1, 2, 3, 4, 5, or 10 conservative amino acid substitutions. In another example, there are 1, 2, 3, 4, 5 or 10 conservative amino acid substitutions. The effects of these amino acid substitutions, deletions, or additions on host polypeptides can be assayed, for example, by analyzing the ability of cells transformed with the derivative proteins to resist infection by the corresponding virus.
[0411] Also included are fragments of any host polypeptide encoded by any of the target sequences associated with SEQ ID NOS: 1-227, 229, and 231, as well as fragments of the target amino acid sequences associated with SEQ ID NOS: 228, 230, and 232. For example, a protein can include at least 5-500 contiguous amino acids of the protein, such as at least 6-200, at least 6-100, at least 10-100, at least 10-50, or at least 20-50 contiguous amino acids of the protein. A host polypeptide fragment can be at least 5, at least 10, at least 15, at least 25, at least 50, at least 100, at least 200, at least 500, or more amino acids of a polypeptide having an amino acid sequence corresponding to a coding region of the nucleotide sequence in any of the target sequences associated with SEQ ID NOS: 1-227, 229, and 231, or a conservative variant thereof, as well as target amino acid sequences associated with SEQ ID NOS: 228, 230, and 232.
[0412] Fragments of a nucleic acid target sequences associated with SEQ ID NOS: 1-227, 229, and 231 can include 10-5000 contiguous nucleic acids, such as 12-1000, 12-500, 15-100, or 18-50 contiguous nucleic acids. A host nucleic acid fragment can be at least at least 5, at least 10, at least 15, at least 20, at least 25, at least 50, at least 100, at least 200, at least 500, at least 1000, at least 2000, at least 5000 or more contiguous nucleic acids in any target sequence associated with SEQ ID NOS: 1-227, 229, and 231, or a variant or fusion thereof. Also included are host nucleic acids that encode the same polypeptide encoded by any target sequence associated with SEQ ID NOS: 1-227, 229, and 231, or a conservative variant of the polypeptide, or a fragment thereof. For example, a host nucleic acid provided by target sequences associated with SEQ ID NOS: 36-37 encodes AMT. A second host nucleic acid also can encode an AMT having the same amino acid sequence as the AMT encoded by target sequences associated with SEQ ID NOS: 36-37, a conservative variant of this AMT, or a fragment thereof, yet this second host nucleic acid can have a different nucleotide sequence than a target sequence associated with SEQ ID NOS: 36-37 due to the degeneracy of the genetic code.
[0413] Methods of Using Host Sequences to Decrease Viral Infection
[0414] The interaction between a host nucleic acid or polypeptide (such as target sequences associated with SEQ ID NOS: 1-232 and those shown in Table 1) and a virus or viral protein can be decreased or inhibited using the methods provided. Decreasing or inhibiting this interaction can be used to decrease viral infection of a host cell, and/or to decrease symptoms associated with a viral infection in a subject. For example, decreasing or even inhibiting the interaction of a host nucleic acid or polypeptide and a virus can decrease, inhibit, or even prevent infection of a host cell by that virus, or otherwise inhibit the progression or clinical manifestation of the viral infection. In addition, decreasing the interaction of a host nucleic acid or polypeptide and a virus can reduce or alleviate one or more symptoms associated with viral infection, such as a fever.
[0415] Several methods can be used to decrease or inhibit the interaction between a viral protein and a host protein or nucleic acid. The viral and host proteins or nucleic acids can be part of an in vitro solution, an in vivo expression system, or in situ with a host tissue or subject. The viral protein can be part of a larger molecule or complex, such as an envelope protein on the envelope of a mature virus or a fragment of a viral envelope. The host protein also can be part of a larger molecule or complex, such as a host polypeptide expressed as part of a fusion protein or contained as one subunit of a larger protein, such as a transport protein, cell receptor, structural protein, or an enzyme. A host nucleic acid can be part of a larger molecule, complex, organism or microorganism such as a host nucleic acid contained within its host genome, a recombinant vector, or a transgenic organism or microorganism (including both extrachromosomal molecules or genomic insertions).
[0416] In accordance with the disclosed methods, interaction is decreased or inhibited between a virus or viral protein and more than one (such as 2 or more, such as 3 or more) host nucleic acids or polypeptides. Decreasing or inhibiting the interactions of one or more host nucleic acids or polypeptides with one or more viral proteins can have additive or exponentially increasing effects. For example, it is believed that decreasing the interaction between a host T-cell receptor V-D-J beta 2.1 chain and HIV, or decreasing the activity of a host β-chimerin, within a host cell can enhance the inhibitory effect on HIV infection of that host cell compared to inhibiting the interaction of only one of the host polypeptides. Hence, the methods include interfering with an interaction between the virus or viral protein and more than one of the proteins associated with infection by the same virus.
[0417] For example, for infection with HIV, the method could interfere with one, or two or more (such as three or more) of the following: T-cell receptor V beta chain; T-cell receptor V-D-J beta 2.1 chain; β-chimerin (CHN2); malic enzyme 1; Hypothetical protein XP--174419; sequence from Chromosome 4q31.3-32; alpha satellite DNA; LOC253788; LOC219938; coagulation factor III (F3); LOC91759; similar to KOX4 (LOC131880); LOC166140; LOC222474; similar to Rho guanine nucleotide exchange factor 4, isoform a; APC-stimulated guanine nucleotide exchange factor (LOC221178); T-cell receptor beta; ribosomal protein L7A-like 4 (RPL7AL4); v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) (SRC); KIAA0564; alpha satellite DNA; M96 protein; hypothetical protein similar to G proteins (such as RAP-2A; L0057826); LOC161005 and osteoblast specific factor 2 (fasciclin I-like).
[0418] For Ebola virus, examples of targets include one, or two or more (such as three or more) of the following: exportin 5; DNA polymerase eta (POLH); heterogenous nuclear riboprotein C (C1/C2); alpha-endosulfine pseudogene; LOC128741; LOC222888; LOC138421; zinc finger protein 297B; sideroflexin 5; importin 9; T-cell receptor beta; similar to murine putative transcription factor ZNF131 (LOC135952); KIAA1259; MURR1; CCT4; FLJ40773 and similar to ribosomal protein L24-like (LOC149360); testin 2; testin 3; polybromo 1; DNA damage inducible transcript 3 (DDIT3); KIAA1887; PDZ and LIM domain 1 (elfin) (PDLIM1); LOC284803; PRO0097 and FLJ31958; small inducible cytokine E, member 1 (endothelial monocyte-activating); E3 ubiquitin ligase (SMURF2) and MGC40489; Rab9; PRO1617 and retinoblastoma binding protein 1 (RBBP1); region of chromosome 2q12; elongation factor for selenoprotein translation; transcription factor SMIF (HSA275986); KIAA1026; trinucleotide repeat containing 5; homogentisate 1,2-dioxygenase; region of chromosome Xq23-24; region of chromosome 4p15.3; similar to LWamide neuropeptide precursor protein [Hydractinia echinata](LOC129883); region of chromosome 2q21; region of chromosome Xp11.4, including UPS9X; LOC221829; U3 small nuclear RNA; integrin, beta 1; acrosomal vesicle protein 1 (ACRV1) and CHK1 checkpoint homolog (CHEK1); prospero-related homeobox 1 (PROX1); FLJ20627 and FLJ12910; PIN2-interacting protein (PINX1) and SRY (sex-determining region Y)-box 7 (SOX7); LOC131920; region of chromosome 13q14; neurotrophic tyrosine kinase, receptor, type 3 (NTRK3); TERA protein; FLJ13224; LOC284260; POM (POM121 homolog) and ZP3 fusion (POMZP3); DEAD/H box polypeptide 8 (DDX8) and similar to ribosomal protein L29 (cell surface heparin binding protein HIP) (LOC284064); LOC345307 and UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7 (GALNT7); 5S rRNA pseudogene; ribosomal protein L27a pseudogene (RPL27AP) and v-myb myeloblastosis viral oncogene homolog-like 2 (MYBL2); Down's syndrome cell adhesion molecule like 1; LOC148529; Huntingtin-associated protein interacting protein; LOC158525 and similar to RIKEN cDNA 1210001E11 (LOC347366); hypothetical protein FLJ12910; LOC350411; allograft inflammatory factor 1 (AIF1); HLA-B associated transcript 2 (BAT2); C10orf7; LOC346658; LOC340349; region of chromosome 12q21; LOC339248; FLJ22659; SR rich protein DKFZp564B0769; hypothetical protein MGC14793; FLJ10439; cytochrome P450, family 11, subfamily A, polypeptide 1; sema domain, immunoglobulin domain (Ig) and GPI membrane anchor, (semaphoring) 7A; ribosomal protein S16; hypothetical protein DKFZp434H0115; ATP citrate lyase; calnexin; protein tyrosine phosphatase, receptor type, K (PTPRK); cyclin M2; AXL receptor tyrosine kinase; Homo sapiens chromosome 10 open reading frame 3, mRNA (cDNA clone MGC:3422 IMAGE:3028566); Homo sapiens chromosome 10 open reading frame 3 (C10orf3); and Homo sapiens fer-1-like 3, myoferlin (C. elegans) (FER1L3), transcript variant 1.
[0419] For influenza, examples of targets include one, or two or more (such as three or more) of the following: T-cell leukemia translocation-associated (TCTA) gene, aminomethyltransferase; dystroglycan; BSN; LIM domain containing preferred translocation partner in lipoma (LPP); sequence between LOC253121 and hyaluronan synthase 2 (HAS2); testin 2; testin 3; PTPN1 gene for protein tyrosine phosphatase, non-receptor type 1; sequence between LOC149360 and LOC253961; sequence between KIAA1560 and tectorin beta; cadherin related 23; myeloid/lymphoma or mixed lineage leukemia, translocated to 10; malic enzyme 1; hypothetical protein XP--174419; and sequence from chromosome 4q31.3-32.
[0420] In examples where a host polypeptide is a cell receptor or part of a cell receptor, decreasing or preventing expression of the polypeptide, or altering the three-dimensional structure of the polypeptide, can reduce or inhibit the interaction between the host cell receptor and a viral protein. Similarly, decreasing, inhibiting or preventing expression of a host ligand polypeptide (or altering the structure of such a ligand) can decrease or inhibit an interaction between the viral protein and the ligand. For example, decreasing or inhibiting expression of one or more enzymes involved in viral pathogenesis, such as those listed in Table 1 and those target sequences associated with SEQ ID NOS: 1-232, can block a component of the viral life cycle, such as blocking a signal pathway leading to transcription or translation of the viral genome, or assembly of viral sub-parts. Decreasing or inhibiting the enzymatic activity of an enzyme (rather than its expression) can have a similar effect.
[0421] Altering the nucleotide sequence of a host nucleic acid, for example by targeting disruption of the nucleotide sequence using complementary nucleic acid sequences, can decrease, inhibit or prevent integration of a viral nucleic acid into the host nucleic acid. Methods that can be used to interrupt or alter translation of a host nucleic acid include, but are not limited to, using an antisense RNA, RNAi molecule, or an siRNA that binds to a messenger RNA transcribed by the nucleic acid encoding a host polypeptide as described herein. Decreasing or inhibiting the expression of the host nucleic acid can also alter the course of the disease. In one example, altering the nucleotide sequence of a host gene that is targeted by a virus for viral integration can decrease, inhibit, or even prevent, integration of that virus into the host genome.
[0422] A host nucleic acid involved in viral infection, including variants, fusions and fragments thereof, can be used to design agents that bind to a target sequence of that nucleic acid, such as antisense nucleic acids or siRNAs. Such nucleic acid binding agents can be used to decrease or inhibit expression of the nucleic acid, to reduce the incidence of viral infection. For example, an expression vector that transcribes antisense RNA or siRNA that recognizes human β-chimerin mRNA is used to transform cell lines obtained from simians. These transformed cell lines are analyzed for infection by simian immunodeficiency virus (SIV), which is related to HIV. If those cells are resistant to SIV infection, the disrupted gene is identified, sequenced, and compared to the human β-chimerin gene. Sequence similarities between the two genes will offer insight into common molecular mechanisms for infection by HIV and SIV, for example, common structural regions within their respective translated proteins.
[0423] A binding agent that recognizes a host nucleic acid involved in viral infection can be used for prophylactic or therapeutic purposes. For example, expression vectors having antisense RNA, RNAi molecules, or siRNA molecules that target a host nucleic acid involved in viral infection, such as β-chimerin, are introduced into the bone marrow of a subject. Uptake of the vector and expression of the antisense RNA, RNAi, or siRNA within cells infected by HIV offers a prophylactic or therapeutic effect by disrupting the β-chimerin genes within those cells, thus decreasing or inhibiting HIV infection. Similarly, expression vectors including Rab9 antisense RNA, RNAi, or siRNA molecules can be introduced into the bone marrow of a subject. Uptake of the vector and expression of Rab9 antisense RNA, RNAi, or siRNA within cells infected by a pathogen that can hijack a lipid raft, such as HIV or Ebola, offers a prophylactic or therapeutic effect by disrupting the Rab9 genes within those cells, thus decreasing or even inhibiting infection by a pathogen that can hijack a lipid raft. The vector, or other nucleic acid carrying the nucleic acid specific binding agent, is introduced into a subject by any standard molecular biology method and can be included in a composition containing a pharmaceutically acceptable carrier.
[0424] Decreasing or inhibiting the interaction between a viral protein and a host protein can decrease or inhibit viral infection. Methods that can be used to decrease an interaction between a viral protein and one or more host proteins (such as at least 2 host proteins, or at least 3 host proteins), include but are not limited to, disrupting expression of a host nucleic acid sequence encoding the host protein, (for example by functionally deleting the coding sequence, such as by a mutation, insertion, or deletion), altering the amino acid sequence or overall shape of the host protein, degrading the host protein, employing an agent that interferes with the viral protein or host protein (such as a specific binding agent, for example an antibody or small molecule), or a combination thereof.
[0425] For example, expression of a host protein can occur during transcription or translation of a nucleic acid encoding the host protein, or as a result of post-translational modification of a host protein. Methods that can be used to interrupt or alter transcription of a nucleic acid include, but are not limited to, site-directed mutagenesis, including mutations caused by a transposon or an insertional vector; and providing a DNA-binding protein that binds to the coding region of the host protein, thus blocking or interfering with RNA polymerase or another protein involved in transcription. Various inactive and recombinant DNA-binding proteins, and their effects on transcription, are discussed in Lewin, Genes VII. Methods that can be used to interrupt or alter translation of a nucleic acid include, but are not limited to, using an antisense RNA or an siRNA that binds to a messenger RNA transcribed by the nucleic acid encoding the host polypeptide as described herein.
[0426] For example, exemplary host T-cell receptor polypeptides are encoded by target sequences associated with SEQ ID NOS: 1-20. Disrupting the expression of a nucleic acid including any target sequence associated with SEQ ID NOS: 1-20 can reduce or prevent production of the corresponding T-cell receptor polypeptide, and without access to the T-cell receptor polypeptide, an HIV virus cannot infect the host cell. Even if expression of the host nucleic acid is not completely blocked or disrupted, virus infection can still be inhibited. For example, interference with a host protein encoded by any target sequence associated with SEQ ID NOS: 1-20 reduces the number of T-cell receptors within that host cell available for recognition by an HIV virus, thus inhibiting HIV infection.
[0427] It is shown herein that inhibiting the interaction or activity between host Rab9 and HIV and Ebola using Rab9 siRNA molecules decreases infection of a host cell by the virus compared to the amount of infection in the absence of the siRNA molecules.
[0428] Host proteins involved in viral infection, such as those encoded by target cDNA sequences associated with SEQ ID NOS: 1-227, 229, and 231, as well as target sequences associated with SEQ ID NOS: 228, 230, and 232, can be used to generate specific binding agents to those proteins. The specific binding agent can be an anti-protein binding agent, such as a monoclonal or polyclonal antibody. Anti-protein binding agents can provide a prophylactic or therapeutic effect, for example by interfering with viral infection. Assays to determine whether an antibody interferes with viral infection are described herein. Antibodies that recognize a host protein involved in viral infection can prevent a virus or portion thereof (such as a viral protein) from binding to a host protein involved in viral infection. For example, a monoclonal or polyclonal antibody that binds to a V beta T-cell receptor on a cell can block the binding of HIV to that T-cell receptor, thus blocking infection of that cell. Effective amounts of such specific binding agents can be administered alone to a subject, or as part of a pharmaceutical composition, for the treatment of viral infection or as a prophylactic measure prior to the time the subject is exposed to the virus. In another example, specific binding agents that recognize a host protein involved in viral infection, such as β-chimerin or Rab9, can be used can be used to screen for the presence of the host protein, in other cells, tissues or lysates, including a biological sample obtained from a subject.
[0429] Host nucleic acids and polypeptides described herein, such as target sequences associated with SEQ ID NOS: 1-232, can be used for prophylactic or therapeutic uses. For example, polypeptides with structures mimicking a protein recognized by a virus can be administered to a subject as a pharmaceutical composition. These polypeptides interact with a virus already infecting that subject, or provide a prophylactic defense mechanism against infection if the subject is at risk of exposure to a virus. For example, polypeptides structurally similar to the T-cell receptor V beta 2.1 chain are recognized by HIV. If such polypeptides are administered to an HIV-positive subject, the viruses already present in the subject interact with those polypeptides in addition to that subject's T-cell receptors, thus inhibiting the rate at which HIV infects T-cells. The administered polypeptides act as "decoys" to block HIV from interacting with T-cell receptors. As another example, an agent that otherwise interferes with the interaction between a virus and a host protein can provide a similar prophylactic effect. For example, a chemical compound or anti-AMT binding agent (such as an antibody) that interferes with the interaction between AMT and an influenza virus (including an enzymatic inhibitor of AMT) provides a prophylactic or therapeutic effect against influenza A infection when provided to a host cell or administered to a host subject.
[0430] Additionally, the proteins described herein can be used to screen samples for the presence or absence of a particular antibody. For example, a β-chimerin or Rab9 protein can be used in an ELISA to screen a sample obtained from an individual for the presence of anti-β-chimerin or anti-Rab9 antibodies generated by that individual, such as a blood sample.
[0431] Using a method similar to that described for nucleic acid binding agents above, protein binding agents (such as agents that specifically bind β-chimerin, Rab9, or V beta T-cell receptor proteins) can be used to screen cells, individuals or populations for the presence or absence of polypeptides related to infection (such as HIV, Ebola, or influenza infection), thus providing information about the susceptibility or resistance of that individual or population to viral infection.
[0432] The host nucleic acids, proteins, and related specific binding agents described herein can be used as models for the design of anti-viral drugs. For example, the three-dimensional structure of a protein described herein, such as β-chimerin, can be used in computer modeling of chemotherapeutic agents that block the activity of that moiety, for example by binding the protein. As another example, a monoclonal antibody can be used in a competitive binding assay to screen for other compounds that bind the same antigen.
Screening for Resistance to Infection
[0433] Also provided herein are methods of screening host subjects for resistance to infection by characterizing a nucleotide sequence of a host nucleic acid or the amino acid sequence of a host polypeptide (such as those shown in Table 1, or any target sequence associated with SEQ ID NOS: 1-232).
[0434] For example, the T-cell receptor V beta 2.1 chain nucleic acid of a subject can be isolated, sequenced, and compared to SEQ ID NO: 20 (or a target sequence associated with SEQ ID NO: 20). The greater the similarity between that subject's V beta 2.1 chain nucleic acid and the sequence shown in SEQ ID NO: 20 (or a target sequence associated with SEQ ID NO: 20), the more susceptible that person is to HIV infection, while a decrease in similarity between that subject's V beta 2.1 chain nucleic acid and SEQ ID NO: 20 (or a target sequence associated with SEQ ID NO: 20), the more resistant that subject can be to HIV infection.
[0435] In another example, the aminomethyltransferase (AMT) nucleic acid of a subject can be isolated, sequenced, and compared to SEQ ID NOS: 36-37 (or a target sequence associated with SEQ ID NOS: 36-37). The greater the similarity between that subject's AMT nucleic acid and the sequence shown in SEQ ID NOS: 36-37 (or a target sequence associated with SEQ ID NOS: 36-37), the more susceptible that person is to influenza A infection, while a decrease in similarity between that subject's AMT nucleic acid and SEQ ID NOS: 36-37 (or a target sequence associated with SEQ ID NOS: 36-37), the more resistant that subject can be to influenza A infection.
[0436] In yet another example, the Ras oncogene family member Rab9 nucleic acid of a subject can be isolated, sequenced, and compared to SEQ ID NOS: 118-119 (or a target sequence associated with SEQ ID NOS: 118-119). The greater the similarity between that subject's Rab9 nucleic acid and the sequence shown in SEQ ID NOS: 118-119 (or a target sequence associated with SEQ ID NOS: 118-119), the more susceptible that person is to infection by a pathogen that uses lipid rafts, such as those listed in Table 2, while a decrease in similarity between that subject's Rab9 nucleic acid and SEQ ID NOS: 118-119 (or a target sequence associated with SEQ ID NOS: 118-119), the more resistant that subject may be to infection by a pathogen that uses lipid rafts.
[0437] Assessing the genetic characteristics of a population can provide information about the susceptibility or resistance of that population to viral infection. For example, polymorphic analysis of AMT alleles in a particular human population, such as the population of a particular city or geographic area, can indicate how susceptible that population is to influenza A infection. A higher percentage of AMT alleles substantially similar to SEQ ID NOS: 36-37 (or a target sequence associated with SEQ ID NOS: 36-37) indicates that the population is more susceptible to influenza A infection, while a large number of polymorphic alleles that are substantially different than SEQ ID NOS: 36-37 (or a target sequence associated with SEQ ID NOS: 36-37) indicates that a population is more resistant to influenza A infection. Such information can be used, for example, in making public health decisions about vaccinating susceptible populations.
Transgenic Cells and Non-Human Mammals
[0438] Transgenic animal models, including recombinant and knock-out animals, can be generated from the host nucleic acids described herein. Exemplary transgenic non-human mammals include, but are not limited to, mice, rats, chickens, cows, and pigs. In certain examples, a transgenic non-human mammal has a knock-out of one or more of the target sequences associated with SEQ ID NOS: 1-35, and has a decreased viral susceptibility, for example infection by HIV. In certain embodiments, a transgenic non-human mammal has a knock-out of any of the target sequences associated with SEQ ID NOS: 36-63, and has a decreased viral susceptibility, for example infection by influenza A. In certain examples, a transgenic non-human mammal has a knock-out of any of the target sequences associated with SEQ ID NOS: 64-232, and has a decreased viral susceptibility, for example infection by Ebola. In certain examples, a transgenic non-human mammal has a knock-out of any target sequence associated with SEQ ID NOS: 118-119, and has a decreased susceptibility to infection by a pathogen that uses a lipid raft, such as those listed in Table 2. Such knock-out animals are useful for reducing the transmission of viruses from animals to humans. In addition, animal viruses that utilize the same targets provided herein can be decreased in the animals.
[0439] Expression of the sequence used to knock-out or functionally delete the desired gene can be regulated by choosing the appropriate promoter sequence. For example, constitutive promoters can be used to ensure that the functionally deleted gene is never expressed by the animal. In contrast, an inducible promoter can be used to control when the transgenic animal does or does not express the gene of interest. Exemplary inducible promoters include tissue-specific promoters and promoters responsive or unresponsive to a particular stimulus (such as light, oxygen, chemical concentration, such as a tetracycline inducible promoter).
[0440] For example, a transgenic mouse including an AMT gene (such as a target sequence associated with SEQ ID NOS: 36-37), or a mouse having a disrupted AMT gene, can be examined during exposure to various mammalian viruses related to influenza A. Comparison data can provide insight into the life cycles of influenza and related viruses. Moreover, knock-out animals (such as pigs) that are otherwise susceptible to an infection (for example influenza) can be made to determine the resistance to infection conferred by disruption of the gene.
[0441] Transgenic pigs having a disrupted human protein tyrosine phosphatase gene can be produced and used as an animal model to determine other types of infections, including viral infections in mammals related to influenza A. A transgenic pig resistant to infection by viruses other than influenza A is used to demonstrate the relatedness of influenza and those other viruses. Transgenic animals, including methods of making and using transgenic animals, are described in various patents and publication, such as WO 01/43540; WO 02/19811; U.S. Pub. Nos: 2001-0044937 and 2002-0066117; and U.S. Pat. Nos. 5,859,308; 6,281,408; and 6,376,743; and the references cited therein.
[0442] Cells including an altered or disrupted host nucleic acid or polypeptide having a role in viral infection (such as a target sequence associated with SEQ ID NOS: 1-232), are resistant to infection by a virus (see Example 2). Such cells may therefore include cells having decreased susceptibility to HIV infection (such as cells having altered or disrupted target sequence associated with SEQ ID NOS: 1-35), Ebola infection (such as cells having altered or disrupted target sequence associated with SEQ ID NOS: 64-232), or influenza A (such as cells having altered or disrupted target sequence associated with SEQ ID NOS: 36-63). For example, cells in which a β-chimerin gene was disrupted using the gene-trap method remain CD4.sup.+ after HIV infection and do not produce further detectable HIV virus particles. Thus, disrupting the expression of β-chimerin can confer resistance on the cell to infection by HIV. Additionally, interfering with the activity of β-chimerin, such as contacting a β-chimerin with an enzymatic inhibitor or an anti-β-chimerin binding agent, can confer a similar resistance to HIV infection.
Screening for Agents that Decrease Viral Infection
[0443] A host nucleic acid or polypeptide involved in viral infection, such as a target sequence associated with SEQ ID NOS: 1-232, and peptides listed in Table 1, can be used to identify agents that inhibit the binding of a virus or viral protein to a host nucleic acid, a host protein, or another target protein capable of binding to the virus or viral protein. In some examples, a host molecule, such as a host protein or nucleic acid is contacted with a viral molecule, such as a virus or portion thereof, for example as a viral protein. One or more test agents are contacted with the host molecule, the viral molecule, both both molecules, before, during or after contacting the host and viral molecules. Subsequently, it is determined whether binding of the viral molecule to the host molecule is decreased in the presence of the test agent, wherein a decrease in binding is an indication that the test agent decreases the binding of viral protein to the target protein.
[0444] In other examples, a cell-based assay is used to identify proteins that decrease viral infection, for example using the yeast two-hybrid system.
[0445] For example, the binding of the T-cell receptor V-D-J beta 2.1 chain polypeptide to HIV (or an HIV envelope glycoprotein) can be determined in the presence of a test agent. A decrease in binding activity between the T-cell receptor V-D-J beta 2.1 chain polypeptide and HIV indicates that the test agent decreases the binding of HIV to the T-cell receptor V-D-J beta 2.1 chain, and the agent is a candidate for use as an anti-HIV agent. A decrease in binding activity can be determined by a comparison to a reference standard, such as a binding activity reported in the scientific literature, or to a control. Any suitable compound or composition can be used as a test agent, such as organic or inorganic chemicals, including aromatics, fatty acids, and carbohydrates; peptides, including monoclonal antibodies, polyclonal antibodies, and other specific binding agents; or nucleic acids. The virus or viral molecule can be obtained from any suitable virus, such as HIV, influenza A, Ebola, and related viruses.
[0446] Therapeutic agents identified with the disclosed approaches can be used as lead compounds to identify other agents having even greater antiviral activity. For example, chemical analogs of identified chemical entities, or variant, fragments of fusions of peptide agents, are tested for their ability to decrease viral infection using the disclosed assays. Candidate agents are also tested for safety in animals and then used for clinical trials in animals or humans.
Microarrays
[0447] The host nucleic acids or proteins disclosed herein having a role in viral infection, such as a target sequence associated with SEQ ID NOS: 1-232, can be used in an array. The array can be a microarray, such as a nucleic acid array that includes probes to different polymorphic alleles of a human AMT gene (for example target sequence associated with SEQ ID NOS: 36-37) or a human Rab9 gene (for example target sequence associated with SEQ ID NOS: 118-119). Kits can be generated, such as diagnostic kits or kits for screening for the presence or absence of a host nucleic acid within a biological sample obtained from a subject or kits for administering an effective amount of a specific binding agent to a subject for a therapeutic or prophylactic purpose.
[0448] The following examples are provided to illustrate particular features of certain embodiments, but the scope of the claims should not be limited to those features exemplified.
Example 1
Generation of Cells with Increased Resistance to Viral Infection
[0449] The gene-trap method was used to identify cellular genes needed for viral propagation but whose inactivation is not lethal to the host cell. This was accomplished by using a Moloney murine leukemia virus-derived shuttle vector that encodes for a promoterless neomycin-resistance gene (FIG. 1). This vector integrates into the host genome at transcriptionally active genes, thereby disrupting the host gene but utilizing the host promoter to drive neomycin resistance carried by the vector. The cells are then infected with the desired virus. Cells surviving the viral infection carry an interrupted host gene that is needed during the viral life cycle. Since the construct is a shuttle vector, it can function as a plasmid and can be moved from mammalian to bacterial systems, facilitating subcloning and DNA sequencing. Using this approach, loci involved in, and in some cases required for viral infection, for example by HIV-1 and HIV-2, influenza A and Ebola virus were identified.
Tissue Culture
[0450] Sup-T1 human lymphoblastic leukemia cells were cultured in RPMI-1640 medium supplemented with 10% heat-inactivated fetal calf serum (FCS), penicillin, streptomycin and Fungisome. MDCK normal canine kidney cells were cultured in DMEM supplemented with 10% fetal bovine serum (FBS), penicillin, streptomycin. Vero African green monkey kidney cells were cultured in DMEM supplemented with 10% FBS, amphotericin B, streptomycin, and Glutamine. All cultures were grown under 5% CO2. Selection by all media was done in the presence of either 1 mg/ml (Sup-T1 and MDCK cells) or 400 mg/ml G418 (Geneticin; Vero cells).
Generation of Gene-Trapped Library of Cells
[0451] Parental, virus sensitive cells were plated and infected with U3neoSV1 as follows. Retrovirus vectors were obtained from H. Earl Ruley (Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn.). Stocks of the U3neoSV1 virus were prepared as described (Chen et al., Gene trap retroviruses in Methods in Molecular Genetics (1994), page 123, herein incorporated by reference).
[0452] FIG. 1 illustrates the U3neoSV1 retroviral vector, which contains a promoterless neomycin phosphotransferase gene (NeoR) within the U3 unique sequence of the 5' long terminal repeat (LTR) of MMLV. Additionally, a second mutationally inactivated copy of neo is present in the 3' LTR. Portions of the MMLV genome were removed to impair replication, and were replaced with the β-lactamase gene which confers ampicillin resistance (AmpR) to E. coli as well as an E. coli origin of replication (ori), flanked by two unique restriction sites for BamHI (position 2570) and EcoRI (position 4175). Sites and orientations of primers used for sequence analysis of cloned genomic fragments are indicated by the triangular arrowheads.
[0453] Parental, virus sensitive cells (106 Sup-T1 for HIV, Madin-Darby canine kidney, (MDCK) for influenza A, or Vero cells for Ebola) were plated for 12 hours before infection, after which U3neoSV1 was added at a multiplicity of infection (MOI) of 0.1, as titered by adding 1 ml of diluted stocks to cultured cells in the presence of 4 μg/ml polybrene. The cells were incubated at 37° C. for one hour, 10 ml of fresh medium added, and the cells were incubated overnight at 37° C. The next day, the medium was replaced with the appropriate media containing 1 mg/ml G418 and maintained until surviving cells approached confluence, which was usually about two weeks.
[0454] Upon random integration of the U3neoSV1 vector into the host genome, endogenous promoters result in expression of NeoR, while expression of the exons 3' to the site of integration is disrupted. Therefore, only those events occurring at transcriptionally active promoters of non-essential genes are selected.
[0455] A pool of the surviving cells, termed a library, including many cells bearing different disrupted genes was then exposed to the pathogen of interest. The resulting Sup-T1 library cells, MDCK library cells, and Vero library cells were infected HIV-1 and HIV-2; the A/PR/8/34 virus reassortant having A/Johannesburg/82/96 glycoproteins (H1N1); and Ebola, respectively, as follows.
[0456] An aliquot of the cell library was infected with three rounds of HIV-1 and three rounds of HIV-2 (3Bx in BC7 cells), normally a lethal event for Sup T-1 cells (FIG. 4). Approximately 3×108 actively growing Sup-T1 library cells were infected with the CXCR4 cytopathic HIV-1 strain LAI at an MOI of 10, approximately 100 fold greater that that normally used for spreading infection in culture. The cells were incubated with the virus for four hours in 2 ml of medium, then grown in bulk at 106 cells/ml for two weeks, at which time G418 was added to a final concentration of 1 mg/ml and the cultures continued for an additional two weeks. The surviving cells were exposed to two further rounds of HIV-1 infection as described above and shown in FIG. 4.
[0457] Following HIV-1 infection, surviving cells were incubated 1:100 with BC7 T cells constitutively expressing the HIV-2 strain 3BX, which was modified to infect regardless of CD4 status, solely using the CXCR4 receptor. Cells were coincubated for two weeks followed by selection with 1 mg/ml G418 (same as FIG. 4, but with HIV-2 instead of HIV-1). The surviving cells were exposed to two further rounds of HIV-2 infection.
[0458] The final cell culture was selected using anti-CD4 magnetic microbeads (Miltyni) and divided into 2.0 ml cultures containing 1000 cells each. These were then infected with LAI at an MOI of 10. Surviving cells from each culture were subjected to limit dilution, or growth on methylcellulose, and expanded in selection medium. The isolated clones were identified as being CD4 and CXCR4 positive following flow cytometry analysis using standard protocols. Several cell isolates were resistant to further HIV infection with unique expression of CD4 cell surface antigen.
[0459] For influenza infection, approximately 107 actively growing MDCK library cells were washed with phosphate buffered saline (Gibco) and infected with the A/PR/8/34 virus reassortant having A/Johannesburg/82/96 glycoproteins (H1N1) at an MOI of 20-30 in 250 μl DMEM in a T-25 flask. The cells were incubated with the virus for two hours, and the inoculum was subsequently replaced with DMEM, supplemented with 2% FBS and 1 μg/ml TPCK trypsin (to cleavage-activate HA of new progeny virus). The cells were incubated for 18 hours to provide 2-3 rounds of infection. The maintenance medium was removed and replaced with selection medium (DMEM with 10% FBS and 1 mg/ml neomycin) and survivors allowed to expand. The surviving cells were exposed to one additional round of infection as described.
[0460] For filovirus infection, vero library cells were infected with either the Gulu 2000 or Zaire 1976 Ebola (EBO) strains, or the Voege 1967 strain of Marburg (MBG) at an MOI of greater than one in T-75 flasks in medium supplemented with 400 mg/ml G418. After a cytopathic effect (CPE) of 4+ was attained (greater than one week), survivors were harvested and reseeded undiluted and at 1:16 and 1:256 dilutions in selection medium. Wells with growth after 10 or more days were reinoculated into T12.5 flasks in selection medium and allowed to expand.
[0461] Cells surviving Ebola or influenza infection were cloned by either limiting dilution or growth on methylcellulose. The isolates were characterized phenotypically by flow cytometry and the interrupted gene determined by inverse PCR, cloning into BAC, or by the use of the shuttle feature of the vector followed by DNA sequence analysis.
Example 2
Cloning and Sequencing of Trapped Genes
[0462] This example describes the methods used to clone the sequences conferring resistance to the library of cells surviving viral infection. The identified sequences (SEQ ID NOS: 1-227, 229, 231) encode host proteins that are involved in pathogen infection, and in some cases are required for the infectivity by the pathogen.
Isolation of Trapped Genes
[0463] The genomic DNA from actively growing virus-resistant isolates was extracted, prepared, and electroporated into cells as follows. Cellular DNA from actively growing virus-resistant isolates was extracted from one million cells using the QIAamp DNA Blood Mini Kit (Qiagen, Inc.) according to the manufacturer's instructions. Genomic DNA was digested at a final concentration of 150 μg/ml with either EcoRI or BamHI (New England Biolabs) at 1.5 or 2 units/μl, respectively (see FIG. 1). Digested DNA was ethanol precipitated using oyster glycogen (Sigma) as a carrier, resuspended to a final concentration of 60 ng/μl and ligated using T4 DNA ligase (New England Biolabs). Genomic digestion resulted in the fragmentation of the retrovirus and the genomic DNA. Ligations were subsequently ethanol precipitated in the presence of glycogen, resuspended in 3 μl water and used directly to transform E. coli.
[0464] A 1.5 μl aliquot of each precipitated ligation was added to thawed Genehog cells (Invitrogen) or SURE cells (Stratagene), electroporated using a GenePulser (BioRad) according to the manufacturer's instructions, and plated onto Luria broth (LB) agar (1% tryptone, 0.5% yeast extract, 0.5% NaCl, 2% agar) containing 100 μg/μl carbenicillin (Sigma). Clones were isolated after 24 hours and used to inoculate 3 ml LB containing 100 μg/μl carbenicillin. Plasmid DNA was prepared after overnight growth using the QIAprep Spin Miniprep Kit (QIAGEN, Inc.) according to the manufacturer's instructions and eluted in water.
Sequencing of Shuttle Clones
[0465] Due to the position of the unique sites in U3neoSV1, BamHI digestion facilitates cloning of DNA 3' to the site of integration, while EcoRI digestion results in the cloning of genomic DNA 5' to the site of integration. Using oligonucleotides homologous to the U3neoSV1 fragment, the sequence of the disrupted genomic DNA flanking the gene-trap insertion site was determined as follows.
[0466] Sequencing reactions were performed using the ABI BigDye terminator cycle sequencing kit with reaction products resolved on either an ABI 3100 Genetic Analyzer or an ABI 377 DNA Sequencer (Applied Biosystems, Foster City, Calif.). Sequences were obtained by using oligonucleotides 5'-ATCTTGTTCAATCATGCG (SEQ ID NO: 235) and 5'-GGGTCTGACGCTCATG (SEQ ID NO: 236) for EcoRI-generated shuttle clones, or 5'-GATAGGTGCCTCACTG (SEQ ID NO: 237) for BamHI-generated shuttle clones.
Sequence Analysis
[0467] Sequences obtained from shuttle clones were analyzed by the Repeatmasker Web Server, available on the Internet at the website for the Department of Molecular Biotechnology, University of Washington, followed by standard nucleotide-nucleotide BLAST (blastn) against the National Center for Biotechnology Information databases, including nr (non-redundant GenBank+EMBL+DDBJ+PDB sequences), est (expressed sequence tags) and htgs (unfinished High Throughput Genomic Sequences: phases 0, 1 and 2). Additionally, a nucleotide-protein database (blastx) analysis was performed against the nr database.
Candidate Host Genes Required for Pathogenesis
[0468] Candidate host genes required for the indicated pathogen, which were cloned via the gene-trap method and sequenced, are presented in Table 1 and in SEQ ID NOS: 1-226. The CD4.sup.+, latently infected, noninfectious HIV-resistant isolates 18B, 18E, 2B, and 2E were used to recover the genes involved in HIV-1 and HIV-2 pathogenesis, influenza A-resistant isolates B1, B3, B5, B6, and B7 were use to recover the host genes involved in influenza A pathogenesis, and Ebola-resistant isolates ZV and MV were used to recover the host genes involved in Ebola pathogenesis. Candidate genes can be validated by siRNA and cDNA complementation, as described in Example 3.
[0469] In summary, using the U3neoSV1 gene-trap, sixteen HIV-1 and -2 resistant Sup-T1 cell lines, and fifteen influenza A resistant MDCK cell lines were isolated and characterized. Twenty-three EBO-Zaire resistant Vero cell line pools, twenty-four EBO-Gulu resistant pools, and thirty MBG resistant pools were screened. The shuttle-vector design of the U3neoSV1 gene-trap allowed identification of multiple host genes involved in the pathogenesis of HIV-1, HIV-2, influenza A, and Ebola, which are described herein and summarized in Table 1 and sequences provided in SEQ ID NOS: 1-232. Cross-resistance of resistant isolates to multiple pathogens can be quickly examined to reveal common pathways in the viral life cycles.
Example 3
siRNA Molecules Decrease Viral Infection
[0470] This example describes methods used to express siRNAs that recognize Rab9 (such as a target sequence associated with SEQ ID NOS: 118-119), AXL (AXL receptor tyrosine kinase; such as a target sequence associated with SEQ ID NO: 226), CHN (beta-chimerin; such as a target sequence associated with SEQ ID NOS: 21-22), KOX (such as a target sequence associated with SEQ ID NO: 30), RBB (retinoblastoma binding protein 1; such as a target sequence associated with SEQ ID NOS: 120-122), KIAA1259; F3 (such as a target sequence associated with SEQ ID NO: 29), and Mselb (mammalian selenium binding protein; such as a target sequence associated with SEQ ID NO: 124).
[0471] The following Rab9 siRNA sequences were generated by Dharmacon, RNA Technologies (Lafayette, Colo.) using chemical synthesis: GGGAAGAGTTCACTTATGA (SEQ ID NO: 238); TCACAAAGCTTCCAGAACT (SEQ ID NO: 239); GTAACAAGATTGACATAAG (SEQ ID NO: 240); and GGAAGTGGATGGACATTTT (SEQ ID NO: 241).
[0472] The following AXL (AXL receptor tyrosine kinase) siRNA sequences were generated by Dharmacon, RNA Technologies using chemical synthesis: GGUCAGAGCUGGAGGAUUU (SEQ ID NO: 242); GAAAGAAGGAGACCCGUUA (SEQ ID NO: 243); CCAAGAAGAUCUACAAUGG (SEQ ID NO: 244); and GGAACUGCAUGCUGAAUGA (SEQ ID NO: 245).
[0473] siRNA sequences were also used that recognized CHN (beta-chimerin); KOX (similar to KOX4 (LOC131880) and LOC166140); RBB (retinoblastoma binding protein 1); KIAA1259; F3 and mammalian selenium binding protein. One skilled in the art will understand that siRNA sequences that recognize other sequences involved in viral infection (such as a target sequence associated with any of SEQ ID NOS: 1-232) can be designed and prepared by commercial entities, such as Dharmacon, RNA Technologies.
[0474] The four siRNA sequences for each gene (CHN, KOX, RBB, RAB, KIAA1259, F3, ASL and Mselb) were separately pooled. Each of the eight pools of siRNAs, hybridized to its appropriate complement sequence, were used to transfect JC53 (HeLa cells modified to accept HIV), Vero (monkey kidney cells), MDCK (dog kidney cells), or HEK (human kidney cells). All cells were obtained from American Type Culture Collection (ATCC, Mannassas, Va.). GFP siRNA sequences were used as a negative control.
[0475] Cells (20,000 to 250,000) were incubated in serum free media for 24 hours. Cocktails were made by mixing the appropriate duplex siRNAs (50-100 pmoles) with lipofectamine 2000 (4-16 μl) and RNAse Inhibitor (1-4 μl) in a solution of Optimem (serum free medium) in a total volume of 200-2000 μl. The lipofectamine was allowed to incubate at room temperature for 5 minutes before the addition of siRNA. Aliquots (50-500 μl) of the cocktail were added to the cells which were incubated at 37° C. for 48 hours. The cells were then infected with HIV, Ebola, or influenza and the incubation continued for 3-7 days. Following transfection, several assays were conducted to confirm transfection efficiency, and to determine the resistance of the cells to infection by various agents.
[0476] Quantitation of p24 levels in HIV infected JC53 cells was determined using the Coulter HIV-1 p24 Antigen Neutralization Kit according to the manufacturers recommendation. As shown in FIG. 5, Rab9 siRNAs and mammalian selenium binding protein siRNAs each decreased HIV infection by about 50% on day 4 post infection (day 7 post addition of siRNA). In addition, HIV infection decreased by about 80-90% in the presence of beta-chimerin siRNAs, KOX (similar to KOX4 (LOC131880) and LOC166140) siRNAs, or retinoblastoma binding protein 1 siRNAs. However, HIV infection did not decrease in the presence of siRNAs that recognize KIAA1259, tissue factor 3, or AXL receptor tyrosine kinase. It is possible that apoptosis is interrupted by the siRNAs, so the cell lives through the infection but still makes virus. It is also possible that the p24 levels are elevated but is not associated with infectious particles.
[0477] To determine the level of Ebola infection in HEK293 cells transfected with Rab9 or AXL siRNA, the presence of gpl antigen was determined by using a fluorescent antibody to gpl envelope protein. Infection by Ebola decreased by at least about 90-95% in the presence of Rab9 siRNA, as compared to the amount of infection in the absence of Rab9 siRNA. Infection by Ebola decreased by at least about 80% in the presence of AXL siRNA, as compared to the amount of infection in the absence of AXL siRNA.
Example 4
Expression of Rab9 siRNA Decreases Lipid Raft Formation
[0478] As described in Example 3, siRNA molecules that recognize Rab9 decrease viral infection. Rab9 transports late endosomes to trans-golgi. Based on these results, a model is proposed whereby Rab9 plays a role in lipid raft formation (FIG. 6). Lipid rafts are liquid-ordered microdomains enriched in sphingolipds and cholesterol, and are involved in biosynthetic traffic, signal transduction, and endocytosis. Viruses take advantage of ("hijack") rafts for completion of some steps of their replication cycle, such as entry into their cell host, assembly, and budding. Without wishing to be bound to a particular theory, it is proposed that Rab9 trafficks cholesterol, the dynamic glue that holds lipid rafts together. Further evidence for this hypothesis is based on observations of Neimann-Pick type C disease cells. Neimann-Pick type C is a genetic disease that results in accumulation of abnormally high levels of intracellular cholesterol. However, over expression of Rab9 in Neimann-Pick type C disease cells, decreases the level of cholesterol.
[0479] Examples of pathogens that hijack lipid rafts include, but are not limited to those shown in Table 2. In the absence of functional Rab9 and lipid rafts (or a decrease in the number of rafts), viruses may not be able to bud or be infectious. Therefore, the use of agents that decrease or inhibit Rab9 expression or activity can be used to decrease infection by other pathogens, as well as toxins such as anthrax, that hijack lipid rafts, such as those shown in Table 2.
TABLE-US-00002 TABLE 2 Pathogens that hijack lipid rafts. Bacteria Intracellular Toxin binding/ survival oligomerization Viruses Protozoa Campylobacter Vibrio cholerae SV40 Toxoplasma gondii jujuni Legionella Aeromonas hydrophilia Echovirus 1 and 11 Plasmodium falciparum pneumophila Brucella spp Clostridium spp. Avian sarcoma and leukosis virus FimH and Dr Streptcoccus pyogenes Semiliki forest virus Escherichia coli Salmonella Bacillus anthracis Ecotropic mouse typhimurium leukaemia virus Shigella flexneri Bacillus thuringiensis HTLV-1 Chlamydia spp. Helicobacter pylori HIV-1 Mycobacterium Lysteria monocytogenes Ebola and Marburg spp. viruses Measles virus Herpes Simplex virus Influenza virus Epstein-Barr virus
[0480] This example therefore illustrates that identification of an agent (such as a small molecule or siRNA) that inhibits a particular pathogen can be used to inhibit other pathogens that have a similar mechanism of action.
Example 5
RNAi Molecules
[0481] This example describes methods that can be used to decrease or inhibit expression of any of the genes listed in Table 1, or target sequences associated with SEQ ID NOS: 1-232, to decrease viral infection, such as infection by HIV, Ebola, or influenza. Exemplary RNAi compounds are provided for several different genes, such as beta-chimerin receptor tyrosine kinase, retinoblastoma binding protein 1, Homo sapiens chromosome 10 open reading frame 3, Homo sapiens fer-1-like 3, myoferlin (C. elegans), transcript variant 1, Homo sapiens chromosome 10 open reading frame 3 (C10orf3), malic enzyme, cadherin related 23, sideroflexin 5, polybromo 1, elongation factor for selenoprotein translation, integrin, beta 1, Huntington interacting protein 1 and cyclin M2.
[0482] One skilled in the art will understand that RNAi molecules can be generated to any of the genes listed in Table 1. Although only 27mers are shown in SEQ ID NOS: 246-845, this disclosure is not limited to RNAi compounds of a particular length. An RNAi molecule can be any length, such as at least about 25 nucleotides, or even as many as 400 nucleotides. One skilled in the art will also understand that RNAi sequences that recognize other sequences involved in viral infection (such as a target sequence associated with any of SEQ ID NOS: 1-232) can be designed and prepared by commercial entities, such as Sequitur, Inc. (Natick, Mass.).
[0483] Using the methods described in Example 3, the disclosed RNAi compounds are used to decrease viral infection. For example, a 27mer RNAi compound shown in any of SEQ ID NOS: 246-845 is incubated with its reverse complement, allowing hybridization of the two molecules. In particular examples, two or more, such as three or more, 27mer RNAi compounds are transfected into a cell. This duplex molecule is contacted with a cell, such as a cell of a subject in whom decreased viral infection is desired, under conditions that allow the duplex to enter the cell.
Example 6
Disruption of Gene Expression
[0484] This example describes methods that can be used to disrupt expression of a host gene, such as those shown in Table 1 and target sequences associated with SEQ ID NOS: 1-232, and thereby decrease activity of the proteins encoded by these sequences. Such methods are useful when it is desired to decrease or inhibit viral infection. In a particular example, disrupted expression of at least one target sequence associated with SEQ ID NOS: 1-232 in a host cell is used to treat a subject having a viral infection, or susceptible to a viral infection. Methods useful for disrupting gene function or expression are the use of antisense oligonucleotides, siRNA molecules (see Example 3), RNAi molecules (see Example 5), ribozymes, and triple helix molecules. Techniques for the production and use of such molecules are well known to those of skill in the art.
Antisense Methods
[0485] To design antisense oligonucleotides, a host mRNA sequence is examined Regions of the sequence containing multiple repeats, such as TTTTTTTT, are not as desirable because they will lack specificity. Several different regions can be chosen. Of those, oligos are selected by the following characteristics: those having the best conformation in solution; those optimized for hybridization characteristics; and those having less potential to form secondary structures. Antisense molecules having a propensity to generate secondary structures are less desirable.
[0486] Plasmids including antisense sequences that recognize one or more of the target sequences associated with SEQ ID NOS: 1-232 (such as a sequence that encodes a protein listed in Table 1) can be generated using standard methods. For example, cDNA fragments or variants coding for a host protein involved in viral infection are PCR amplified. The nucleotides are amplified using Pfu DNA polymerase (Stratagene) and cloned in antisense orientation a vector, such as pcDNA vectors (InVitrogen, Carlsbad, Calif.). The nucleotide sequence and orientation of the insert can be confirmed by sequencing using a Sequenase kit (Amersham Pharmacia Biotech).
[0487] Generally, the term "antisense" refers to a nucleic acid capable of hybridizing to a portion of a host RNA sequence (such as mRNA) by virtue of some sequence complementarity. The antisense nucleic acids disclosed herein can be oligonucleotides that are double-stranded or single-stranded, RNA or DNA or a modification or derivative thereof, which can be directly administered to a cell, or which can be produced intracellularly by transcription of exogenous, introduced sequences.
[0488] Antisense nucleic acids are polynucleotides, and can be oligonucleotides (ranging from about 6 to about 100 oligonucleotides). In one example, an antisense polynucleotide recognizes one or more of the target nucleic acid sequences associated with SEQ ID NOS: 1-227, 229, or 231. In specific examples, the oligonucleotide is at least 10, 15, or 100 nucleotides, or a polynucleotide of at least 200 nucleotides. However, antisense nucleic acids can be much longer. The nucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, and can include other appending groups such as peptides, or agents facilitating transport across the cell membrane (Letsinger et al., Proc. Natl. Acad. Sci. USA 1989, 86:6553-6; Lemaitre et al., Proc. Natl. Acad. Sci. USA 1987, 84:648-52; WO 88/09810) or blood-brain barrier (WO 89/10134), hybridization triggered cleavage agents (Krol et al., BioTechniques 1988, 6:958-76) or intercalating agents (Zon, Pharm. Res. 5:539-49, 1988).
[0489] An antisense polynucleotide (including oligonucleotides) that recognizes one or more of the target sequences associated with SEQ ID NOS: 1-227, 229, or 231, can be modified at any position on its structure with substituents generally known in the art. For example, a modified base moiety can be 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N-6-sopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N-6-adenine, 7-methylguanine, 5-methylaminomethyluracil, methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N-6-isopentenyladenine, uracil-5-oxyacetic acid, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-S-oxyacetic acid, 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl)uracil, and 2,6-diaminopurine.
[0490] An antisense polynucleotide that recognizes one or more of the target sequences associated with SEQ ID NOS: 1-227, 229, or 231, can include at least one modified sugar moiety such as arabinose, 2-fluoroarabinose, xylose, and hexose, or a modified component of the phosphate backbone, such as phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, or a formacetal or analog thereof.
[0491] In a particular example, an antisense polynucleotide that recognizes one or more of the target sequences associated with SEQ ID NOS: 1-227, 229, or 231 is an α-anomeric oligonucleotide. An α-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gautier et al., Nucl. Acids Res. 15:6625-41, 1987). The oligonucleotide can be conjugated to another molecule, such as a peptide, hybridization triggered cross-linking agent, transport agent, or hybridization-triggered cleavage agent. Oligonucleotides can include a targeting moiety that enhances uptake of the molecule by host cells. The targeting moiety can be a specific binding molecule, such as an antibody or fragment thereof that recognizes a molecule present on the surface of the host cell.
[0492] Polynucleotides disclosed herein can be synthesized by standard methods, for example by use of an automated DNA synthesizer. As examples, phosphorothioate oligos can be synthesized by the method of Stein et al. (Nucl. Acids Res. 1998, 16:3209), methylphosphonate oligos can be prepared by use of controlled pore glass polymer supports (Sarin et al., Proc. Natl. Acad. Sci. USA 85:7448-51, 1988). In a specific example, antisense oligonucleotide that recognizes one or more of the target sequences associated with SEQ ID NOS: 1-227, 229, or 231 includes catalytic RNA, or a ribozyme (see WO 90/11364, Sarver et al., Science 247:1222-5, 1990). In another example, the oligonucleotide is a 2'-0-methylribonucleotide (Inoue et al., Nucl. Acids Res. 15:6131-48, 1987), or a chimeric RNA-DNA analogue (Inoue et al., FEBS Lett. 215:327-30, 1987).
[0493] The antisense polynucleic acids disclosed herein include a sequence complementary to at least a portion of an RNA transcript of a gene, such as a target sequence associated with SEQ ID NOS: 1-227, 229, or 231. However, absolute complementarity, although advantageous, is not required. A sequence can be complementary to at least a portion of an RNA, meaning a sequence having sufficient complementarily to be able to hybridize with the RNA, forming a stable duplex; in the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation can be assayed. The ability to hybridize depends on the degree of complementarity and the length of the antisense nucleic acid. Generally, the longer the hybridizing nucleic acid, the more base mismatches with an RNA it may contain and still form a stable duplex (or triplex, as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.
[0494] The relative ability of polynucleotides (such as oligonucleotides) to bind to complementary strands is compared by determining the Tm of a hybridization complex of the poly/oligonucleotide and its complementary strand. The higher the Tm the greater the strength of the binding of the hybridized strands. As close to optimal fidelity of base pairing as possible achieves optimal hybridization of a poly/oligonucleotide to its target RNA.
[0495] The amount of antisense nucleic acid that is effective in the treatment of a particular disease or condition (the therapeutically effective amount) depends on the nature of the disease or condition, and can be determined by standard clinical techniques. For example, it can be useful to use compositions to achieve sustained release of an antisense nucleic acid, for example an antisense molecule that recognizes one or more target sequences associated with SEQ ID NOS: 1-227, 229, or 231. In another example, it may be desirable to utilize liposomes targeted via antibodies to specific cells.
[0496] As an alternative to antisense inhibitors, catalytic nucleic acid compounds, such as ribozymes or anti-sense conjugates, can be used to inhibit gene expression. Ribozymes can be synthesized and administered to the subject, or can be encoded on an expression vector, from which the ribozyme is synthesized in the targeted cell (as in WO 9523225, and Beigelman et al. Nucl. Acids Res. 1995, 23:4434-42). Examples of oligonucleotides with catalytic activity are described in WO 9506764. Conjugates of antisense with a metal complex, such as terpyridylCu (II), capable of mediating mRNA hydrolysis, are described in Bashkin et al. (Appl. Biochem Biotechnol. 54:43-56, 1995).
Ribozymes
[0497] Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. The mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. Methods of using ribozymes to decrease or inhibit RNA expression are known in the art. An overview of ribozymes and methods of their use is provided in Kashani-S abet (J. Imvestig. Dermatol. Symp. Proc., 7:76-78, 2002).
[0498] Ribozyme molecules include one or more sequences complementary to the target host mRNA and include the well-known catalytic sequence responsible for mRNA cleavage (see U.S. Pat. No. 5,093,246, herein incorporated by reference).
[0499] A ribozyme gene directed against any of the target sequences associated with SEQ ID NOS: 1-227, 229, or 231 can be delivered to a subject endogenously (where the ribozyme coding gene is transcribed intracellularly) or exogenously (where the ribozymes are introduced into a cell, for example by transfection). Methods describing endogenous and exogenous delivery are provided in Marschall et al. (Cell Mol. Neurobiol. 14:523-38, 1994).
[0500] Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites that include the following sequence: GUA, GUU and GUC. Once identified, short RNA sequences of between 15 and ribonucleotides corresponding to the region of the target gene containing the cleavage site may be evaluated for predicted structural features, such as secondary structure, that may render the oligonucleotide sequence unsuitable. The suitability of candidate targets may also be evaluated by testing their accessibility to hybridization with complementary oligonucleotides, using ribonuclease protection assays.
[0501] For example, a plasmid that contains a riboyzme gene directed against a β-chimerin rho-GTPase, placed behind a promoter, can be transfected into the cells of a subject, for example a subject susceptible to HIV infection. Expression of this plasmid in a cell will decrease or inhibit β-chimerin rho-GTPase RNA expression in the cell. In another example, a plasmid that contains a riboyzme gene directed against Rab9 placed behind a promoter, can be transfected into the cells of a subject, for example a subject susceptible to infection by a pathogen that utilizes lipid rafts, such as Ebola. Expression of this plasmid in a cell will decrease or inhibit Rab9 RNA expression in the cell. Other examples of using ribozymes to decrease or inhibit RNA expression can be found in WO 01/83754 (herein incorporated by reference).
Triple Helix Molecules
[0502] Nucleic acid molecules used in triplex helix formation should be single stranded and composed of deoxynucleotides. The base composition of these oligonucleotides is ideally designed to promote triple helix formation via Hoogsteen base pairing rules, which generally require sizeable stretches of either purines or pyrimidines to be present on one strand of a duplex. Nucleotide sequences may be pyrimidine-based, which will result in TAT and CGC+triplets across the three associated strands of the resulting triple helix. The pyrimidine-rich molecules provide base complementarity to a purine-rich region of a single strand of the duplex in a parallel orientation to that strand. In addition, nucleic acid molecules may be chosen that are purine-rich, for example, contain a stretch of guanidine residues. These molecules will form a triple helix with a DNA duplex that is rich in GC pairs, in which the majority of the purine residues are located on a single strand of the targeted duplex, resulting in GGC triplets across the three strands in the triplex.
[0503] Alternatively, the potential sequences that can be targeted for triple helix formation may be increased by creating a so called "switchback" nucleic acid molecule. Switchback molecules are synthesized in an alternating 5'-3',3'-5' manner, such that they base pair with one strand of a duplex first and then the other, eliminating the necessity for a sizeable stretch of either purines or pyrimidines to be present on one strand of a duplex.
Example 7
Methods of Treatment
[0504] When the activity of a host cell protein or nucleic acid involved in viral infection is decreased by prematurely downregulating their levels of expressing using antisense molecules, a reduction in viral infection can be achieved. Antisense oligonucleotides, RNAi molecules, ribozymes, and siRNA molecules that recognize a host nucleic acid involved in viral infection (Example 6) can therefore be used to disrupt cellular expression of a host protein involved in viral infection. The disclosed antisense, ribozyme, RNAi molecules and siRNA molecules can be administered to a subject alone, or in combination with other therapeutic agents such as anti-viral compounds.
[0505] A subject susceptible to or suffering from a viral infection, wherein decreased amounts of infection by the virus is desired, can be treated with a therapeutically effective amount of antisense, ribozyme, RNAi molecule or siRNA molecule (or combinations thereof) that recognizes a host sequence involved in viral infection, such as those shown in Table 1 or target sequences associated with SEQ ID NOS: 1-232. After the antisense, ribozyme, RNAi molecule or siRNA molecule has produced an effect (a decreased level of viral infection is observed, or symptoms associated with viral infection decrease), for example after 24-48 hours, the subject can be monitored for diseases associated with viral infection.
[0506] Similarly, other agents, such as an antibody that recognizes a host protein involved in viral infection and prevents the protein from interacting with a viral protein, can also be used to decrease or inhibit viral infection. Other exemplary agents are those identified using the methods described in the Examples below. These agents, such as antibodies, peptides, nucleic acids, organic or inorganic compounds, can be can be administered to a subject in a therapeutically effective amount. After the agent has produced an effect (a decreased level of viral infection is observed, or symptoms associated with viral infection decrease), for example after 24-48 hours, the subject can be monitored for diseases associated with viral infection.
[0507] The treatments disclosed herein can also be used prophylactically, for example to inhibit or prevent a viral infection. Such administration is indicated where the treatment is shown to have utility for treatment or prevention of the disorder. The prophylactic use is indicated in conditions known or suspected of progressing to disorders associated with a viral infection.
Example 8
Recombinant Expression
[0508] With the disclosed host sequences involved in viral infection, native and variant sequences can be generated. Expression and purification by standard laboratory techniques of any variant, such as a polymorphism, mutant, fragment or fusion of a sequence involved in viral infection, such as a target sequence associated with SEQ ID NOS: 1-232, is enabled. One skilled in the art will understand that the sequences involved in viral infection, as well as variants thereof, can be produced recombinantly in any cell or organism of interest, and purified prior to use.
[0509] Methods for producing recombinant proteins are well known in the art. Therefore, the scope of this disclosure includes recombinant expression of any host protein or variant or fragment thereof involved in viral infection. For example, see U.S. Pat. No. 5,342,764 to Johnson et al.; U.S. Pat. No. 5,846,819 to Pausch et al.; U.S. Pat. No. 5,876,969 to Fleer et al. and Sambrook et al. (Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, N.Y., 1989, Ch. 17, herein incorporated by reference).
[0510] Briefly, partial, full-length, or variant cDNA sequences that encode for a protein involved in viral infection, such as a target sequence associated with SEQ ID NOS: 1-232, can be ligated into an expression vector, such as a bacterial expression vector. Proteins or peptides can be produced by placing a promoter upstream of the cDNA sequence. Examples of promoters include, but are not limited to lac, tip, tac, trc, major operator and promoter regions of phage lambda, the control region of fd coat protein, the early and late promoters of SV40, promoters derived from polyoma, adenovirus, retrovirus, baculovirus and simian virus, the promoter for 3-phosphoglycerate kinase, the promoters of yeast acid phosphatase, the promoter of the yeast alpha-mating factors and combinations thereof.
[0511] Vectors suitable for the production of intact proteins include pKC30 (Shimatake and Rosenberg, 1981, Nature 292:128), pKK177-3 (Amann and Brosius, 1985, Gene 40:183) and pET-3 (Studiar and Moffatt, 1986, J. Mol. Biol. 189:113). A DNA sequence can be transferred to other cloning vehicles, such as other plasmids, bacteriophages, cosmids, animal viruses and yeast artificial chromosomes (YACs) (Burke et al., 1987, Science 236:806-12). These vectors can be introduced into a variety of hosts including somatic cells, and simple or complex organisms, such as bacteria, fungi (Timberlake and Marshall, 1989, Science 244:1313-7), invertebrates, plants (Gasser and Fraley, 1989, Science 244:1293), and mammals (Pursel et al., 1989, Science 244:1281-8), that are rendered transgenic by the introduction of the heterologous cDNA.
[0512] For expression in mammalian cells, a cDNA sequence, such as a coding sequence of any target sequence associated with SEQ ID NOS: 1-227, 229, or 231, can be ligated to heterologous promoters, such as the simian virus SV40, promoter in the pSV2 vector (Mulligan and Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072-6), and introduced into cells, such as monkey COS-1 cells (Gluzman, 1981, Cell 23:175-82), to achieve transient or long-term expression. The stable integration of the chimeric gene construct may be maintained in mammalian cells by biochemical selection, such as neomycin (Southern and Berg, 1982, J. Mol. Appl. Genet. 1:327-41) and mycophoenolic acid (Mulligan and Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072-6).
[0513] The transfer of DNA into eukaryotic, such as human or other mammalian cells is a conventional technique. The vectors are introduced into the recipient cells as pure DNA (transfection) by, for example, precipitation with calcium phosphate (Graham and vander Eb, 1973, Virology 52:466) strontium phosphate (Brash et al., 1987, Mol. Cell. Biol. 7:2013), electroporation (Neumann et al., 1982, EMBO J. 1:841), lipofection (Feigner et al., 1987, Proc. Natl. Acad. Sci. USA 84:7413), DEAE dextran (McCuthan et al., 1968, J. Natl. Cancer Inst. 41:351), microinjection (Mueller et al., 1978, Cell 15:579), protoplast fusion (Schafner, 1980, Proc. Natl. Acad. Sci. USA 77:2163-7), or pellet guns (Klein et al., 1987, Nature 327:70). Alternatively, the cDNA can be introduced by infection with virus vectors, for example retroviruses (Bernstein et al., 1985, Gen. Engrg. 7:235) such as adenoviruses (Ahmad et al., J. Virol. 57:267, 1986) or Herpes (Spaete et al., Cell 30:295, 1982).
Example 9
Pharmaceutical Compositions and Modes of Administration
[0514] Various delivery systems for administering the therapies disclosed herein are known, and include encapsulation in liposomes, microparticles, microcapsules, expression by recombinant cells, receptor-mediated endocytosis (Wu and Wu, J. Biol. Chem. 1987, 262:4429-32), and construction of therapeutic nucleic acids as part of a retroviral or other vector. Methods of introduction include, but are not limited to, topical, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, and oral routes. The compounds can be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (for example, oral mucosa, rectal, vaginal and intestinal mucosa, etc.) and can be administered together with other biologically active agents. Administration can be systemic or local. Pharmaceutical compositions can be delivered locally to the area in need of treatment, for example by topical application.
[0515] Pharmaceutical compositions are disclosed that include a therapeutically effective amount of an RNA, DNA, antisense molecule, ribozyme, RNAi molecule, siRNA molecule, specific-binding agent, or other therapeutic agent, alone or with a pharmaceutically acceptable carrier. Furthermore, the pharmaceutical compositions or methods of treatment can be administered in combination with (such as before, during, or following) other therapeutic treatments, such as other antiviral agents.
Delivery Systems
[0516] The pharmaceutically acceptable carriers useful herein are conventional. Remington's Pharmaceutical Sciences, by Martin, Mack Publishing Co., Easton, Pa., 15th Edition (1975), describes compositions and formulations suitable for pharmaceutical delivery of the therapeutic agents herein disclosed. In general, the nature of the carrier will depend on the mode of administration being employed. For instance, parenteral formulations usually include injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, sesame oil, glycerol, ethanol, combinations thereof, or the like, as a vehicle. The carrier and composition can be sterile, and the formulation suits the mode of administration. In addition to biologically-neutral carriers, pharmaceutical compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
[0517] The composition can be a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder. For solid compositions (for example powder, pill, tablet, or capsule forms), conventional non-toxic solid carriers can include, for example, pharmaceutical grades of mannitol, lactose, starch, sodium saccharine, cellulose, magnesium carbonate, or magnesium stearate. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides.
[0518] Embodiments of the disclosure including medicaments can be prepared with conventional pharmaceutically acceptable carriers, adjuvants and counterions as would be known to those of skill in the art.
[0519] The amount of therapeutic agent effective in decreasing or inhibiting viral infection can depend on the nature of the virus and its associated disorder or condition, and can be determined by standard clinical techniques. In addition, in vitro assays can be employed to identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each subject's circumstances. Effective doses can be extrapolated from dose-response curves derived from in vitro or animal model test systems.
[0520] The disclosure also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. Instructions for use of the composition can also be included.
Administration of Nucleic Acids
[0521] In an example in which a nucleic acid is employed to reduce viral infection, such as an antisense, RNAi molecule, or siRNA molecule, the nucleic acid can be delivered intracellularly (for example by expression from a nucleic acid vector or by receptor-mediated mechanisms), or by an appropriate nucleic acid expression vector which is administered so that it becomes intracellular, for example by use of a retroviral vector (see U.S. Pat. No. 4,980,286), or by direct injection, or by use of microparticle bombardment (such as a gene gun; Biolistic, Dupont), or coating with lipids or cell-surface receptors or transfecting agents, or by administering it in linkage to a homeobox-like peptide which is known to enter the nucleus (for example Joliot et al., Proc. Natl. Acad. Sci. USA 1991, 88:1864-8). The present disclosure includes all forms of nucleic acid delivery, including synthetic oligos, naked DNA, plasmid and viral, integrated into the genome or not.
Example 10
In Vitro Screening Assay for Agents that Decrease Viral Infection
[0522] This example describes in vitro methods that can be used to screen test agents for their ability to interfere with or even inhibit viral infection of a host cell. As disclosed in the Examples above, the disclosed host proteins (such as those listed in Table 1 and the target protein sequences associated with SEQ ID NOS: 1-232, as well as variants, fragments, and fusions thereof) are involved in viral infection (such as infection by HIV, Ebola, and influenza A), and the host protein/viral protein interaction is a component in the ability of a virus to infect a cell. Therefore, screening assays can be used to identify and analyze agents that decrease or interfere with this interaction. For example, the following assays can be used to identify agents that interfere with the interaction of the disclosed host proteins (such as those listed in Table 1 and the target protein sequences associated with SEQ ID NOS: 1-232) with a viral protein sequence. However, the present disclosure is not limited to the particular methods disclosed herein.
[0523] Agents identified via the disclosed assays can be useful, for example, in decreasing or even inhibiting viral infection by more than an amount of infection in the absence of the agent, such as a decrease of at least about 10%, at least about 20%, at least about 50%, or even at least about 90%. This decrease in viral infection can serve to ameliorate symptoms associated with viral infection, such as fever. Assays for testing the effectiveness of the identified agents, are discussed below.
[0524] Exemplary test agents include, but are not limited to, any peptide or non-peptide composition in a purified or non-purified form, such as peptides made of D- and/or L-configuration amino acids (in, for example, the form of random peptide libraries; see Lam et al., Nature 354:82-4, 1991), phosphopeptides (such as in the form of random or partially degenerate, directed phosphopeptide libraries; see, for example, Songyang et al., Cell 72:767-78, 1993), antibodies, and small or large organic or inorganic molecules. A test agent can also include a complex mixture or "cocktail" of molecules.
[0525] The basic principle of the assay systems used to identify agents that interfere with the interaction between a host protein, such as those listed in Table 1 and the target protein sequences associated with SEQ ID NOS: 1-232, and its viral protein binding partner or partners, involves preparing a reaction mixture containing the host protein and a viral protein under conditions and for a time sufficient to allow the two proteins to interact and bind, thus forming a complex. In order to test an agent for inhibitory activity, the reaction is conducted in the presence and absence of the test agent. The test agent can be initially included in the reaction mixture, or added at a time subsequent to the addition of a host protein and a viral protein. Controls are incubated without the test agent or with a placebo. Exemplary controls include agents known not to bind to viral or host proteins. The formation of any complexes between the host protein and the viral protein is then detected. The formation of a complex in the control reaction, but not in the reaction mixture containing the test agent, indicates that the agent interferes with the interaction of the host protein and the viral protein, and is therefore possibly an agent that can be used to decrease viral infection.
[0526] The assay for agents that interfere with the interaction of host and viral proteins can be conducted in a heterogeneous or homogeneous format. Heterogeneous assays involve anchoring the host protein or the viral protein onto a solid phase and detecting complexes anchored on the solid phase at the end of the reaction. In some examples, the method further involves quantitating the amount of complex formation or inhibition. Exemplary methods that can be used to detect the presence of complexes, when one of the proteins is labeled, include ELISA, spectrophotometry, flow cytometry, and microscopy. In homogeneous assays, the entire reaction is performed in a liquid phase. In either method, the order of addition of reactants can be varied to obtain different information about the agents being tested. For example, test agents that interfere with the interaction between the proteins, such as by competition, can be identified by conducting the reaction in the presence of the test agent, for example by adding the test agent to the reaction mixture prior to or simultaneously with the host protein and viral protein. On the other hand, test agents that disrupt preformed complexes, such as agents with higher binding constants that displace one of the proteins from the complex, can be tested by adding the test agent to the reaction mixture after complexes have been formed. The various formats are described briefly below.
[0527] Once identified, test agents found to inhibit or decrease the interaction between a host protein and a viral protein can be formulated in therapeutic products (or even prophylactic products) in pharmaceutically acceptable formulations, and used for specific treatment or prevention of a viral disease, such as HIV, Ebola, or influenza A.
Heterogeneous Assay System
[0528] In a heterogeneous assay system, one binding partner, either the host protein (such as those listed in Table 1 and target protein sequences associated with SEQ ID NOS: 1-232) or the viral protein (such as an HIV, Ebola, or influenza A virus preparation) is anchored onto a solid surface (such as a microtiter plate), and its binding partner, which is not anchored, is labeled, either directly or indirectly. Exemplary labels include, but are not limited to, enzymes, fluorophores, ligands, and radioactive isotopes. The anchored protein can be immobilized by non-covalent or covalent attachments. Non-covalent attachment can be accomplished simply by coating the solid surface with a solution of the protein and drying. Alternatively, an immobilized antibody (such as a monoclonal antibody) specific for the protein can be used to anchor the protein to the solid surface. The surfaces can be prepared in advance and stored.
[0529] To conduct the assay, the binding partner of the immobilized species is added to the coated surface with or without the test agent. After the reaction is complete, unreacted components are removed (such as by washing) and any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a number of ways. Where the binding partner was pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the binding partner is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; for example by using a labeled antibody specific for the binding partner (the antibody, in turn, may be directly labeled or indirectly labeled with a labeled anti-Ig antibody). Depending upon the order of addition of reaction components, test compounds which inhibit complex formation or which disrupt preformed complexes can be detected.
[0530] Alternatively, the reaction can be conducted in a liquid phase in the presence or absence of the test agent, the reaction products separated from unreacted components, and complexes detected; for example by using an immobilized antibody specific for one binding partner to anchor any complexes formed in solution, and a labeled antibody specific for the other binding partner to detect anchored complexes. Again, depending upon the order of addition of reactants to the liquid phase, test agents which inhibit complex or which disrupt preformed complexes can be identified.
Homogenous Assays
[0531] In an alternate example, a homogeneous assay can be used. In this method, a preformed complex of the host protein and the viral protein is prepared in which one of the proteins is labeled, but the signal generated by the label is quenched due to complex formation (for example, see U.S. Pat. No. 4,109,496 by Rubenstein which utilizes this approach for immunoassays). The addition of a test substance that competes with and displaces one of the binding partners from the preformed complex will result in the generation of a signal above background. In this way, test agents that disrupt host protein-viral protein interactions are identified.
Immobilization of Proteins
[0532] In a particular example, a host protein involved in viral infection (such as those listed in Table 1 and the target protein sequences associated with SEQ ID NOS: 1-232) can be prepared for immobilization using recombinant DNA techniques. For example, a coding region of a protein listed in Table 1, or any target sequence associated with SEQ ID NOS: 1-232, can be fused to a glutathione-S-transferase (GST) gene using the fusion vector pGEX-5X-1, in such a manner that its binding activity is maintained in the resulting fusion protein. The viral protein (such as an Ebola, HIV, or influenza A protein or viral preparation) can be purified and used to raise a monoclonal antibody, using methods routinely practiced in the art and described above. This antibody can be labeled with the radioactive isotope 125I using methods routinely practiced in the art.
[0533] In a heterogeneous assay, for example, the GST-host fusion protein can be anchored to glutathione-agarose beads. The viral protein preparation can then be added in the presence or absence of the test agent in a manner that allows interaction and binding to occur. At the end of the reaction period, unbound material can be washed away, and the labeled monoclonal antibody can be added to the system and allowed to bind to the complexed binding partners. The interaction between the host protein and the viral protein can be detected by measuring the amount of radioactivity that remains associated with the glutathione-agarose beads. A successful inhibition of the interaction by the test compound will result in a decrease in measured radioactivity.
[0534] Alternatively, the GST-host fusion protein and the viral protein can be mixed together in liquid in the absence of the solid glutathione agarose beads. The test agent can be added either during or after the binding partners are allowed to interact. This mixture can then be added to the glutathione-agarose beads and unbound material is washed away. Again, the extent of inhibition of the binding partner interaction can be detected by adding the labeled antibody and measuring the radioactivity associated with the beads.
[0535] In another example, these same techniques can be employed using peptide fragments that correspond to the binding domains of the host protein and the viral protein, respectively, in place of one or both of the full length proteins. Any number of methods routinely practiced in the art can be used to identify and isolate the protein's binding site. These methods include, but are not limited to, mutagenesis of one of the genes encoding the proteins and screening for disruption of binding in a co-immunoprecipitation assay. Compensating mutations in a host gene can be selected. Sequence analysis of the genes encoding the respective proteins will reveal the mutations that correspond to the region of the protein involved in interactive binding. Alternatively, one protein can be anchored to a solid surface using methods described in above, and allowed to interact with and bind to its labeled binding partner, which has been treated with a proteolytic enzyme, such as trypsin. After washing, a short, labeled peptide comprising the binding domain may remain associated with the solid material, which can be isolated and identified by amino acid sequencing. Also, once the gene coding for the for the cellular or extracellular protein is obtained, short gene segments can be engineered to express peptide fragments of the protein, which can then be tested for binding activity and purified or synthesized.
[0536] For example, a host protein can be anchored to a solid material as described above by making a GST-host protein fusion protein and allowing it to bind to glutathione agarose beads. The viral protein can be labeled with a radioactive isotope, such as 35S, and cleaved with a proteolytic enzyme such as trypsin. Cleavage products can then be added to the anchored GST-host protein fusion protein and allowed to bind. After washing away unbound peptides, labeled bound material, representing the cellular or extracellular protein binding domain, can be eluted, purified, and analyzed for amino acid sequence. Peptides so identified can be produced synthetically or fused to appropriate facilitative proteins using recombinant DNA technology.
Example 11
Cell-Based Screening Assay for Agents that Decrease Viral Infection
[0537] This example describes methods using intact cells that can be used to screen test agents for their ability to interfere with or even inhibit viral infection of a host cell. For example, a yeast two-hybrid assay or the inverse two-hybrid assay method of Schreiber and coworkers (Proc. Natl. Acad. Sci., USA 94:13396, 1977) is used to screen for an agent that disrupts the association between a host protein (such as those listed in Table 1, proteins encoded by any target sequence associated with SEQ ID NOS: 1-227, 229, and 231, and any target sequence associated with SEQ ID NOS: 229, 230, and 232) and a viral protein (such as HIV, Ebola, or influenza A virus). Similar to Example 10, therapeutic agents identified by these approaches are tested for their ability to decrease or inhibit infection of a host cell, such as a human cell, by HIV, Ebola, or influenza A.
[0538] In one example, the yeast two-hybrid system is used to identify anti-viral agents. One version of this system has been described (Chien et al., Proc. Natl. Acad. Sci. USA, 88:9578-82, 1991) and is commercially available from Clontech (Palo Alto, Calif.). Briefly, utilizing such a system, plasmids are constructed that encode two hybrid proteins: one includes the DNA-binding domain of a transcription activator protein fused to one test protein "X" and the other includes the activator protein's activation domain fused to another test protein "Y". Thus, either "X" or "Y" in this system can be a host protein (such as those listed in Table 1 and any target sequences associated with SEQ ID NOS: 1-232), while the other can be a test protein or peptide. The plasmids are transformed into a strain of Saccharomyces cerevisiae that contains a reporter gene (such as lacZ) whose regulatory region contains the activator's binding sites. Either hybrid protein alone cannot activate transcription of the reporter gene, the DNA-binding domain hybrid because it does not provide activation function and the activation domain hybrid because it cannot localize to the activator's binding sites. Interaction of the two proteins reconstitutes the functional activator protein and results in expression of the reporter gene, which is detected by an assay for the reporter gene product.
[0539] The two-hybrid system or related methodology can be used to screen activation domain libraries for proteins that interact with a host protein involved in viral infection. Total genomic or cDNA sequences are fused to the DNA encoding an activation domain. This library and a plasmid encoding a hybrid of the host protein involved in viral infection fused to the DNA-binding domain are cotransformed into a yeast reporter strain, and the resulting transformants are screened for those that express the reporter gene. These colonies are purified and the plasmids responsible for reporter gene expression are isolated. DNA sequencing is then used to identify the proteins encoded by the library plasmids.
[0540] For example, and not by way of limitation, a host gene encoding a protein involved in viral infection (such as those listed in Table 1 and target sequences associated with SEQ ID NOS: 1-232) can be cloned into a vector such that it is translationally fused to the DNA encoding the DNA-binding domain of the GAL4 protein. A cDNA library of the cell line from which proteins that interact with the host protein are to be detected can be made using methods routinely practiced in the art. In this particular system, the cDNA fragments can be inserted into a vector such that they are translationally fused to the activation domain of GAL4. This library can be co-transformed along with the host-GAL4 DNA binding domain fusion plasmid into a yeast strain which contains a lacZ gene driven by a promoter which contains GAL4 activation sequences. A cDNA encoded protein, fused to GAL4 activation domain, that interacts with the host protein will reconstitute an active GAL4 protein and thereby drive expression of the lacZ gene. Colonies which express lacZ can be detected by their blue color in the presence of X-gal. The cDNA can then be extracted from strains derived from these and used to produce and isolate the host protein-interacting protein using techniques routinely practiced in the art.
Example 12
Rapid Screening Assays
[0541] Prior to performing any assays to detect interference with the association of a host protein involved in viral infection and a viral protein such as an HIV, Ebola, or influenza A protein, rapid screening assays can be used to screen a large number of agents to determine if they bind to the host or viral protein. Rapid screening assays for detecting binding to HIV proteins have been disclosed, for example in U.S. Pat. No. 5,230,998, which is incorporated by reference. In that assay, a host protein (such as those listed in Table 1 and target protein sequences associated with SEQ ID NOS: 1-232) or a viral protein, such as an HIV protein, is incubated with a first antibody capable of binding to the host or viral protein, and the agent to be screened. Excess unbound first antibody is washed and removed, and antibody bound to the host or viral protein is detected by adding a second labeled antibody which binds the first antibody. Excess unbound second antibody is then removed, and the amount of the label is quantitated. The effect of the binding effect is then determined in percentages by the formula: (quantity of the label in the absence of the test agent)-(quantity of the label in the presence of the test agent /quantity of the label in the absence of the test agent)×100.
[0542] Agents that are found to have a high binding affinity to the host or viral protein can then be used in other assays more specifically designed to test inhibition of the host protein/viral protein interaction, or inhibition of viral replication.
Example 13
Assays for Measuring Inhibition of Viral Infection
[0543] Any of the test agents identified in the foregoing assay systems can be tested for their ability to decrease or inhibit infection by a pathogen or virus such as HIV, Ebola, or influenza A.
Cell-Based Assays
[0544] Exemplary methods are provided in Example 3 above. Briefly, cells (20,000 to 250,000) are infected with the desired pathogen, such as HIV, Ebola, or influenza A, and the incubation continued for 3-7 days. The test agent can be applied to the cells before, during, or after infection with the virus. The amount of virus and agent administered can be determined by skilled practitioners. In some examples, several different doses of the potential therapeutic agent can be administered, to identify optimal dose ranges. Following transfection, assays are conducted to determine the resistance of the cells to infection by various agents.
[0545] For example, the presence of a viral antigen can be determined by using antibody specific for the viral protein then detecting the antibody. In one example, the antibody that specifically binds to the viral protein is labeled, for example with a detectable marker such as a fluorophore. In another example, the antibody is detected by using a secondary antibody containing a label. The presence of bound antibody is then detected, for example using microscopy, flow cytometry, and ELISA.
[0546] Alternatively or in addition, the ability of the cells to survive viral infection is determined, for example by performing a cell viability assay, such as trypan blue exclusion.
Animal Model Assays
[0547] The ability of an agent, such as those identified using the methods provide above, to prevent or decrease infection by a virus, such as HIV, Ebola, or influenza A, can be assessed in animal models. Several animal models for viral infection are known in the art. For example, mouse HIV models are disclosed in Sutton et al. (Res. Initiat Treat. Action, 8:22-4, 2003) and Pincus et al. (AIDS Res. Hum. Retroviruses 19:901-8, 2003); guinea pig models for Ebola infection are disclosed in Parren et al. (J. Virol. 76:6408-12, 2002) and Xu et al. (Nat. Med. 4:37-42, 1998); and cynomolgus monkey (Macaca fascicularis) models for influenza infection are disclosed in Kuiken et al. (Vet. Pathol. 40:304-10, 2003). Such animal models can also be used to test agents for an ability to ameliorate symptoms associated with viral infection. In addition, such animal models can be used to determine the LD50 and the ED50 in animal subjects, and such data can be used to determine the in vivo efficacy of potential agents.
[0548] Animals of any species, including, but not limited to, mice, rats, rabbits, guinea pigs, pigs, micro-pigs, goats, and non-human primates, such as baboons, monkeys, and chimpanzees, can be used to generate an animal model of viral infection if needed.
[0549] The appropriate animal is inoculated with the desired virus, in the presence or absence of the test agents identified in the examples above. The amount of virus and agent administered can be determined by skilled practitioners. In some examples, several different doses of the potential therapeutic agent can be administered to different test subjects, to identify optimal dose ranges. The therapeutic agent can be administered before, during, or after infection with the virus. Subsequent to the treatment, animals are observed for the development of the appropriate viral infection and symptoms associated therewith. A decrease in the development of the appropriate viral infection, or symptoms associated therewith, in the presence of the test agent provides evidence that the test agent is a therapeutic agent that can be used to decrease or even inhibit viral infection in a subject.
[0550] Having illustrated and described the principles of the invention by several examples, it should be apparent that those embodiments can be modified in arrangement and detail without departing from the principles of the invention. Thus, the invention includes all such embodiments and variations thereof, and their equivalents.
Sequence CWU
1
8451937DNAHomo sapiensmisc_feature(1)..(937)n is a, g, c, or t 1gaanagcctn
tccacccaag ngncggagaa ccagngngca attcnttttg ttcaatcatg 60cgaaacgatc
ctyrgstacc gcttgccaaa cctacaggtg gggtctttca agaggtctcc 120agacctaggg
gagcatctca gcgtcactcg ctgtccagtt gctgtgatca ggtgctttgg 180ggtttgtgtg
actccagaat ccactgggcc tgtgtgtcag aagacaaaag ttaaccataa 240ggcacagaag
aaagcctcct gctgaagcca tcgttggccc acatgcattt cagggacaag 300aaatgaagat
cggagacttt caagttgtgc ccaggactca cctgctccca ggagacaaaa 360ggccacacag
cagaggagcc tgaagcccat ggcaggatct cctagcttgg ggctggtgtc 420tctgtagtaa
gcattctgaa gttcctaagc tcccttcttc ctgataggag cattgacctg 480tgatgtcacc
acactgacat actttcccct gcaggccact ccagcccact gtactctttg 540gcaggcctca
ggttctgcta ctccatgtac tattcctgtc ttgcacaggc cagaagctaa 600aggtgaggag
gactgaacac agtaccaaca tacccacatc acaccttact ttcctctgcc 660cgccctgtcc
ctgccctgac actgattccc cagcccttgc caccccagcc ccttcaccct 720ccactgcccg
tgcagcagca gagacactcc ctccttgatg caaactgagg cctctggcac 780cccaactctt
tcaaggcaat gatagtctgt gcttaactct acatggccag gcccccactc 840agggaattnc
tgtgtgaaat tgttatccgc tgsacaattc cacacaacat ggnncgtcag 900accccgaaga
aaagaancaa nggatctttt ggnnacc 93721515DNAHomo
sapiensmisc_feature(1)..(1515)n is a, c, g, or t 2cccgtgttga cgccgggcaa
gngcaactcg gtcgccgcat acactattct cagaatgact 60tggttgagta ctcaccagtc
acagaaaagc atcttacgga tggcatgaca gtaagagaat 120tatgcagtgc tgccataacc
atgagtgata acactgcggc caacttactt ctgacaacga 180tcggaggacc gaaggagcta
accgcttttt tgcacaacat gggggatcat gtaactcgcc 240ttgatcgttg ggaaccggag
ctgaatgaag ccataccaaa cgacgagcgt gacaccacga 300tgcctgcagc aatggcaaca
acgttgcgca aactattaac tggcgaacta cttactctag 360cttcccggca acaattaata
gactggatgg aggcggataa agttgcagga ccacttctgc 420gctcggccct tccggctggc
tggtttattg ctgataaatc tggagccggt gagcgtgggt 480ctcgcggtat cattgcagca
ctggggccag atggtaagcc ctcccgtatc gtagttatct 540acacgacggg gagtcaggca
actatggatg aacgaaatag acagatcgct gagataggtg 600cctcactgat taagcattng
gkaanctgtc agaccattkt ttactgcata tacsgatcca 660ttgcccttat ctcaaactct
tattatgaaa tcactnccct tgagagaraa aaagcctttt 720tctcttnngg atkgtcccag
magytyccga mcatccccac tycccaacct tatgkggccc 780agcaatgans cctagtagta
ggaaaatcty tatggatacy ggkgnctgak gggaarattc 840ttcytctcat gaarwgatgg
kgactggggc tytgggatgc tcacgggaat ccctatttcc 900cccacaaaga agttatttta
ttacacaacc atttggatga cccccttttt cttccaattn 960nccaaataaa tctgtaaagg
tcacaggtga agttcttctc tttaagagct actccatgct 1020aagttcagcg agaacttggg
gtaccctaga cattcttcca gagatgcttt tcttgtaact 1080cttttcaata agtaagcatg
ctttgctctg cactgggtgt cacctgtgtt ggatgctgtt 1140gtccctgcct tgccctatat
tctgtccaca tggtttcttc ataggatgat gcttaggtca 1200gccctgaggt ttgaaccagt
caacaagtcc aggttggtgt ggagtccctt tagtacctcc 1260ctttgcagga ataatgctgc
acccagaaac tccctcagag cctctccact gggaggggcc 1320ttgtgaccat tcctggttta
ctcctcttgt tccagcatcc catgtggcca atgggcccct 1380ttcattttca atggtatctc
anttnttaca gtaagttata ttattgccct acatngaact 1440catctttttt cantgttacc
tgnngaagaa tggnnaagga tgcccnaaan tnggcccaaa 1500anaatccact tcgnn
15153885DNAHomo
sapiensmisc_feature(1)..(885)n is a, g, c, or t 3tgtggtttnc ggtatcgccg
cttccgattc gcagcgcatc gccttctatc gccttcttga 60cgagttcttc tgagcgggac
tctggggttc gaaatgagct agcccttaag taacgccatt 120ttgcaaggca tggaaaaata
cataactgag aatagaaaag ttcagatcga ggtcaggaac 180agatggaaca gggtcgaccg
gtcgaccggt cgaccctaga gaaccatcag atgtttccag 240ggtgccccaa ggacctgaaa
tgaccctgtg ccttatttga actaaccaat cagttcgctt 300ctcgcttctg ttcgcgcgct
tctgctcccc gagctcaata aaagagccca caacccctca 360ctcggggcgc cagtcctccg
attgactgag tcgcccgggt acccgtgtat ccaataaacc 420ctcttgcagt tgcatccgac
ttgtggtctc gctgttcctt gggagggtct cctctgagtg 480attgactacc cgtcagcggg
ggtctttcac tctctgtgta ctggtaccaa cagagcctgg 540accagggcct ccagttcctc
attcagtatt ataatggaga agagagagca aaaggaaaca 600ttcttgaacg attctccgca
caacagttcc ctgacttgca ctctgaacta aacctgagct 660ctctggagct gggggactca
gctttgtatt tctgtgccag cagcgtaggt ggtagcttga 720aacagttctt cgggccaggg
acacggctca ccgtgctagg taagaagggg gctccagtgg 780gagagagggt gagcagccca
ncctgnncga ccccanancc tgttnttagg ggagtggnca 840ctgggcatcc aggccctnct
cnaggaancg ggttncgccn ggncc 8854900DNAHomo
sapiensmisc_feature(1)..(900)n is a, g, c, or t 4ttggtaactg tcagaccaag
tttactcata tcggatccag ttggagccat aagtcgtcag 60acatagaaaa aaatctgaaa
agatatctca aaagcccaga catttattca cactaacggt 120gaaaagcata ccccacagtg
tcagtggagg caacatgggg tcctggattt cctcttcacc 180ctcagtggta gtgaggtgtt
cctctcactc cttctgagta gaggaagcca agaggaaagc 240tggaacttgt accatcatcc
agtggtgata aagcctctgt ccctccacct tacccccagg 300ttatcagtgg caaccacatg
gctagtggta cccctcccgc tcctagccag aatgatatca 360gcagaggcct agagagtagc
ccaaaaactc atctgcaccc agcaggactg aggtttccta 420cccccaccaa tggaagccaa
gtgaggaacc taagccttca cctctcactc agcaggaacc 480agacaacacc ccctaacaca
cacacacaca cacacacaca cacacccttc tgttagtgtg 540gtatcaagga ggcttgataa
aatagaagat ttaaatagga tccattgccc ttatctcaaa 600ctcttattat gaaatcactc
ccttgagaga gaaaaaagcc tttttctctt ggattgtccc 660agcagctccc gaccatcccc
actccccaac cttatgtggc cccagcaatg agcctagtag 720taggaaaatc tctatggata
ctggtgctga tgggaagatt cttcctctca ngaagtgatg 780gtgactgggg ctctgggatg
ctcacgggaa tnccatttcc cccacaagaa nttattttat 840naccaaccat ttggatgacc
cctttttntt ccatttncca annaatttgt aaggncaaag 9005869DNAHomo
sapiensmisc_feature(1)..(869)n is a, g, c, or t 5ttgggnancc ccccacaaag
naagttattt tattacacaa ccatttggat gacccccttt 60ttcttccaat ttcccaaata
aatctgtaaa ggtcacaggt gaagttcttc tctttaagag 120ctactccatg ctaagttcag
cgagaacttg gggtacccta gacattcttc cagagatgct 180tttcttgtaa ctcttttcaa
taagtaagca tgctttgctc tgcactgggt gtcacctgtg 240ttggatgctg ttgtccctgc
cttgccctat attctgtcca catggtttct tcataggatg 300atgcttaggt cagccctgag
gtttgaacca gtcaacaagt ccaggttggt gtggagtccc 360tttagtacct ccctttgcag
gaataatgct gcacccagaa actccctcag agcctctcca 420ctggaggggc cttgtgacca
ttcctggttt actcctcttg ttccagcatc ccatgtggcc 480aatgggcccc tttcattttc
aatggtatct caattcttac agtaagttat attattgccc 540tacatcgaac tcatcttttc
tcagtgttac ctgaggaaga atggagagga tgcccagaat 600tggcccagaa gaatccactt
cgattctaga gaaaaaggca ggtagaggca gaagagattc 660acttcccagt gcatgcgtgc
tgaatgttgg gggtgttgtt tgagagagac aaggaaatgg 720ctgtaaaact tgggaagagg
aacctgccct gggtcaagta gggtgttggg aggaccagat 780ggagcttgaa gctctctcca
tctttgtcaa gtcccctgga ctgagagggn aaaatnacat 840ggcctttatc ctccagagga
aantnattc 8696850DNAHomo
sapiensmisc_feature(1)..(850)n is a, g, c, or t 6tgggggttcc ggtatcgccg
cttcgattcg cagcgcatcg ccttctatcg ccttcttgac 60gagttcttct gagcgggact
ctggggttcg aaatgagcta gcccttaagt aacgccattt 120tgcaaggcat ggaaaaatac
ataactgaga atagaaaagt tcagatcgag gtcaggaaca 180gatggaacag ggtcgaccgg
tcgaccggtc gaccctagag aaccatcaga tgtttccagg 240gtgccccaag gacctgaaat
gaccctgtgc cttatttgaa ctaaccaatc agttcgcttc 300tcgcttctgt tcgcgcgctt
ctgctccccg agctcaataa aagagcccac aacccctcac 360tcggggcgcc agtcctccga
ttgactgagt cgcccgggta cccgtgtatc caataaaccc 420tcttgcagtt gcatccgact
tgtggtctcg ctgttccttg ggagggtctc ctctgagtga 480ttgactaccc gtcagcgggg
gtctttcact ctctgtgtac tggtaccaac agagcctgga 540ccagggcctc cagttcctca
ttcagtatta taatggagaa gagagagcaa aaggaaacat 600tcttgaacga ttctccgcac
aacagttccc tgacttgcac tctgaactaa acctgagctc 660tctggagctg ggggactcag
ctttgtattt ctgtgccagc agcgtaggtg gtagcttgaa 720acagttcttc gggccaggga
cacggctcac cgtgctaggt aagaaggggg ctccaggtgg 780gagagagggt gagcagccca
ncctgcacga ccccanaacc ctgttcttag gggagnggac 840actgggncat
8507847DNAHomo
sapiensmisc_feature(1)..(847)n is a, g, c, or t 7ttgggggacc gcttgccaaa
cctacaggtg gggtctttca agaggtctcc agacctaggg 60gagcatctca gcgtcactcg
ctgtccagtt gctgtgatca ggtgctttgg ggtttgtgtg 120actccagaat ccactgggcc
tgtgtgtcag aagacaaaag ttaaccataa ggcacagaag 180aaagcctcct gctgaagcca
tcgttggccc acatgcattt cagggacaag aaatgaagat 240cggagacttt caagttgtgc
ccaggactca cctgctccca ggagacaaaa ggccacacag 300cagaggagcc tgaagcccat
ggcaggatct cctagcttgg ggctggtgtc tctgtagtaa 360gcattctgaa gttcctaagc
tcccttcttc ctgataggag cattgacctg tgatgtcacc 420acactgacat actttcccct
gcaggccact ccagcccact gtactctttg gcaggcctca 480ggttctgcta ctccatgtac
tattcctgtc ttgcacaggc cagaagctaa aggtgaggag 540gactgaacac agtaccaaca
tacccacatc acaccttact ttcctctgcc cgccctgtcc 600ctgccctgac actgattccc
cagcccttgc caccccagcc ccttcaccct ccactgcccg 660tgcagcagca gagacactcc
ctccttgatg caaactgagg cctctggcac cccaactctt 720tcagggcaat gatagtctgt
gcttaactct acatggccag gccccactca gggaattctc 780acctagaatt tcatatncag
ccaaactaag cttcataagt gaaggggaaa taaaatgctt 840tacagac
8478755DNAHomo
sapiensmisc_feature(1)..(755)n is a, g, c, or t 8ttcactncaa ggatnttaca
acaggacatt ttttaaaacc tcaaacatca ccaaaatttc 60taagtgcaag tttattttta
tttttttttt ttttttgaga cagagtctcg ctctgtcacc 120caggctagag tgcagtggca
tgatcttggc tcactgcaac ctccacctcc caggttcaag 180tgattctctt gcctcagcct
cccaagtagc tagtattaca gacgcctgcc accacgcccg 240gttaattttt gtacttttag
tagagacagg tttcaccata ttggccaggc tggtctcaaa 300ctcctgacct caggtgatcc
tcctgcctca gcctcccaaa gtgctgggat tacaggcatg 360agctaccacg tctggcctaa
gtgcatgtta cctatactaa caaaaccaca cttctgcctc 420gaatgagaac agtctcctga
acatcttgcc tctttgcctg actcaaagcc tcaggtctaa 480gcctccccat aatttctagt
ctcagcagaa agatcaatga caggagactc tccaggtgat 540gaaattaacc aattaagtaa
cctgggttgg catcctcccg tttgttcacc agctcacctn 600ctgccacagg tatatccttt
ctctcancca tatatgcaca aaccccctnc ccacggnaca 660catannaana atttggaaga
ctanaaaatc aggcanggtn tancncacct tgngggctgg 720agtatggnan cctgggccgg
nacatncata cattg 7559839DNAHomo
sapiensmisc_feature(1)..(839)n is a, g, c, or t 9cnntntttgn gnngnnnaag
aaantncnga cntnngccnc caaatnaact tgggggggna 60accttcacta caaggatatt
acaacaggac attttttaaa acctcaaaca tcaccaaaat 120ttctaagtgc aagtttattt
ttattttttt tttttttttt gagacagagt ctcgctctgt 180cacccaggct agagtgcagt
ggcatgatct tggctcactg caacctccac ctcccaggtt 240caagtgattc tcttgcctca
gcctcccaag tagctagtat tacagacgcc tgccaccacg 300cccggttaat ttttgtactt
ttagtagaga caggtttcac catattggcc aggctggtct 360caaactcctg acctcaggtg
atcctcctgc ctcagcctcc caaagtgctg ggattacagg 420catgagctac cacgtctggc
ctaagtgcat gttacctata ctaacaaaac cacacttctg 480cctcgaatga gaacagtctc
ctgaacatct tgcctctttg cctgactcaa agcctcaggt 540ctaagcctcc ccataatttc
tagtctcagc agaaagatca atgacaggag actctccagg 600tgatgaaatt aaccaattaa
gtaacctggg ttggcatcct cccgtttgtt caccagctca 660cctcctgcca caggtatatc
ctttctctca gccatatatg cacaaacccc ctccccacgg 720cacacataga aanaatttgg
aagactagaa aatcaggcna gggnttanca caccttngag 780ggctggagta tggnanccng
ggnccgggan atncatncnn tngaaaactt gactatggg 83910829DNAHomo
sapiensmisc_feature(1)..(829)n is a, g, c, or t 10tcgccttcaa tcgtcttatt
nacgagttct tctgagcggg actctggggt tcgaaatgag 60ctagccctta agtaacgcca
ttttgcaagg catggaaaaa tacataactg agaatagaaa 120agttcagatc gaggtcagga
acagatggaa cagggtcgac cggtcgaccg gtcgacccta 180gagaaccatc agatgtttcc
agggtgcccc aaggacctga aatgaccctg tgccttattt 240gaactaacca atcagttcgc
ttctcgcttc tgttcgcgcg cttctgctcc ccgagctcaa 300taaaagagcc cacaacccct
cactcggggc gccagtcctc cgattgactg agtcgcccgg 360gtacccgtgt atccaataaa
ccctcttgca gttgcatccg acttgtggtc tcgctgttcc 420ttgggagggt ctcctctgag
tgattgacta cccgtcagcg ggggtctttc agtagccctt 480cctttgtagc aaagacagac
agatggtgat ccaagagata cgcaagaaga ggaccgtgtg 540tgtcatggtt gagctctaaa
aaagagaaat cacttggatg gaantgaagg agaggaaaag 600gctgatgtgg atggcctgga
agangttcga ttggttacct tggcaccgag cttccttcct 660catcctcatn cctccctagt
ccttgttctt aaaaanantt ttctttctaa ngtcccttcc 720ccctccncaa gggggcacaa
ggatntttaa aaaacncctt tccgggcnta attttaacct 780angatccatc ccagncccgt
nccnnttttc nnagattcat ttaaacnng 82911710DNAHomo
sapiensmisc_feature(1)..(710)n is a, g, c, or t 11ttttttgcnn taccgtatcg
ccgctntcga ttcgcagcnc atcgccttct atcgccttct 60tgacgagttc ttctgagcgg
gactctgggg ttcgaaatga gctagccctt aagtaacgcc 120attttgcaag gcatggaaaa
atacataact gagaatagaa aagttcagat cgaggtcagg 180aacagatgga acagggtcga
ccggtcgacc ggtcgaccct agagaaccat cagatgtttc 240cagggtgccc caaggacctg
aaatgaccct gtgccttatt tgaactaacc aatcagttcg 300cttctcgctt ctgttcgcgc
gcttctgctc cccgagctca ataaaagagc ccacaacccc 360tcactcgggg cgccagtcct
ccgattgact gagtcgcccg ggtacccgtg tatccaataa 420accctcttgc agttgcatcc
gacttgtggt ctcgctgttc cttgggaggg tctcctctga 480gtgattgact acccgtcagc
gggggtcttt cagtagccct tcctttgtag caaagacaga 540cagatggtga tccaagagat
acgcaagaag aggaccgtgt gtgtaatggt tgagctctaa 600aaagagaaat cacttggatg
gaaatgaagg agaggaaagg ctgatgtgga tggctgggaa 660gaggttcgat ggttaccttg
gcanccganc ttcnttnctn atncccatcc 71012752DNAHomo
sapiensmisc_feature(1)..(752)n is a, g, c, or t 12ttgggaaccg tcagnaccaa
gttttnctca tatcggctcc cttctggtcc cacatcactc 60aggcaactct ctcttcccac
ctgcccccca aactcccttc cacctccctc cacatgtatc 120ctcccacttc cttccactca
tgtaatgaga ggtgctgatg agtcacagga gaggtagccc 180tagataacca acagactgca
aaacggacag tccctggatg tctgagccag tgtttgtgca 240ctgcattgac tggctcctcg
tagttttttc ctgtagttgc taaagcctgt aaggtctgtg 300tgatgaatat tttctaacac
atcttagaag aacataatgc aagacagaat gaaaaactag 360agaggcagaa acccccaaag
taagtagtgg gaaattacca ggtatataat aggtcaagcc 420tgctctgcag gagctcaagg
gattgtagca ttcttatccc aaaccactga atcctgggca 480aaaataagaa gtcgcctaat
tttagtatta ccagcttccc aaccccgggc attcttcatc 540ttactcaagc tgtccagagg
ccccagggtg actccctata agtcccatgg gtggctgaga 600tctatttaga ggcacaaggg
tatctnctta taagtccaat ggggnggctg agatctatga 660gaagcatctt gggggagagt
gccntttggc caccagcatg tggnccctna attttncatg 720nnncaactgg nccngggaag
gaaaantttt ga 75213749DNAHomo
sapiensmisc_feature(1)..(749)n is a, g, c, or t 13ttccttggcg ntaccgtatc
gccgctntng attcgcagcg catcgccttc tatcgccttc 60ttgacgagtt cttctgagcg
ggactctggg gttcgaaatg agctagccct taagtaacgc 120cattttgcaa ggcatggaaa
aatacataac tgagaataga aaagttcaga tcgaggtcag 180gaacagatgg aacagggtcg
accggtcgac cggtcgaccc tagagaacca tcagatgttt 240ccagggtgcc ccaaggacct
gaaatgaccc tgtgccttat ttgaactaac caatcagttc 300gcttctcgct tctgttcgcg
cgcttctgct ccccgagctc aataaaagag cccacaaccc 360ctcactcggg gcgccagtcc
tccgattgac tgagtcgccc gggtacccgt gtatccaata 420aaccctcttg cagttgcatc
cgacttgtgg tctcgctgtt ccttgggagg gtctcctctg 480agtgattgac tacccgtcag
cgggggtctt tcagtagccc ttcctttgta gcaaagacag 540acagatggtg atccaagaga
tacgcaagaa gaggaccgtg tgtgtaatgg ttgagcttta 600aaaaangaga aatcacttgg
atggaaatga agganaggaa aaggcntgat ntngatngcn 660gggaaanagg ttccatnggt
nnctttggnn anccgannct tnctttcctn atccccntnc 720cntccctann nccntnnttn
ttaaaaaag 74914794DNAHomo
sapiensmisc_feature(1)..(794)n is a, g, c, or t 14tttttttgcg ntaccgtatc
gccgctntcg attcgcagcn catcgccttc tatcgccttc 60ttgacgagtt cttctgagcg
ggactctggg gttcgaaatg agctagccct taagtaacgc 120cattttgcaa ggcatggaaa
aatacataac tgagaataga aaagttcaga tcgaggtcag 180gaacagatgg aacagggtcg
accggtcgac cggtcgaccc tagagaacca tcagatgttt 240ccagggtgcc ccaaggacct
gaaatgaccc tgtgccttat ttgaactaac caatcagttc 300gcttctcgct tctgttcgcg
cgcttctgct ccccgagctc aataaaagag cccacaaccc 360ctcactcggg gcgccagtcc
tccgattgac tgagtcgccc gggtacccgt gtatccaata 420aaccctcttg cagttgcatc
cgacttgtgg tctcgctgtt ccttgggagg gtctcctctg 480agtgattgac tacccgtcag
cgggggtctt tcagtagccc ttcctttgta gcaaagacag 540acagatggtg atccaagaga
tacgcaagaa gaggaccgtg tgtgtaatgg ttgagctcta 600aaaaagagaa atcacttgga
tggaaatgaa ggagaggaaa aggctgatgt ggatggctgg 660gaagaggttc gatggttacc
ttggcaaccg agcttccttn ctcatnccca tccctnccta 720gtccttgttc tttaaaaaga
ttttntttnt aatgtccctt nccctccaca agggggcaca 780agatgttttn aaac
79415784DNAHomo
sapiensmisc_feature(1)..(784)n is a, g, c, or t 15ccttggnggg naanacggnt
aacaattttt acacaggaat tactacaaaa gactctacta 60agttctcagg gngaacaaaa
aattgtatgt gtgcagaacc tgtgatttgc ctgcacatag 120tcaagttctc aatgtatgga
tgtcccggcc caggctacca tactccagcc ctcaaggtgt 180gctatacctt gcctgatttt
ctagtcttcc aaattcttct atgtgtgccg tggggagggg 240gtttgtgcat atatggctga
gagaaaggat atacctgtgg caggaggtga gctggtgaac 300aaacgggagg atgccaaccc
aggttactta attggttaat ttcatcacct ggagagtctc 360ctgtcattga tctttctgct
gagactagaa attatgggga ggcttagacc tgaggctttg 420agtcaggcaa agaggcaaga
tgttcaggag actgttctca ttcgaggcag aagtgtggtt 480ttgttagtat aggtaacatg
cacttaggcc agacgtggta gctcatgcct gtaatcccag 540cactttggga ggctgaggca
ggaggatcac ctgaggtcag gagttttgag accagcctgg 600ccaatatggg ggaaaacctg
tctctactaa aaagtacaaa aattaacccg gncgtnggng 660gcaggnnntc tgtaatacta
nnctacttgg ggngntgnag gcaanaaaat cantttgaac 720ctnggnaggg gggngnttgc
aatnnnccna aaaanatgcc cnntggncct ttaaccntgg 780gngn
78416757DNAHomo
sapiensmisc_feature(1)..(757)n is a, g, c, or t 16tcctgggccc ncttgccaaa
ccttcaggtg gggtctttca ctacaagata gtacaacagg 60acatttttta aaacctcaaa
catcaccaaa atttctaagt gcaagtttat ttttattttt 120tttttttttt ttttgagaca
gagtctcgct ctgtcaccca ggctagagtg cagtggcatg 180atcttggctc actgcaacct
ccacctccca ggttcaagtg attctcttgc ctcagcctcc 240caagtagcta gtattacaga
cgcctgccac cacgcccggt taatttttgt acttttagta 300gagacaggtt tcaccatatt
ggccaggctg gtctcaaact cctgacctca ggtgatcctc 360ctgcctcagc ctcccaaagt
gctgggatta caggcatgag ctaccacgtc tggcctaagt 420gcatgttacc tatactaaca
aaaccacact tctgcctcga atgagaacag tctcctgaac 480atcttgcctc tttgcctgac
tcaaagcctc aggtctaagc ctccccataa tttctagtct 540cagcagaaag atcaatgaca
ggagactctn caggtgatga aattaaccaa ttaagtaacc 600tgggttggca tcctcccgtt
tgttcaccag ctcacctnct gncacaggta tatncttttt 660tctnagccat atatgcccaa
anccccctnc ccacggnaca catngaagaa nttnggaaga 720ctngaaaatc aggccagggt
tnngcccacc ttgnggg 75717783DNAHomo
sapiensmisc_feature(1)..(783)n is a, g, c, or t 17annaacttga atgacccctc
tngccaaatc cttagggggg ggtccttcac tacaagatag 60tacaacagga catttttttt
aacctnaaac attaccacaa atttctaagt gcaagtttat 120ttttattttt tttttttttt
ttgagacaga gtctcgctct gtcacccagg ctagagtgca 180gtggcatgat cttggctcac
tgcaacctcc acctcccagg ttcaagtgat tctcttgcct 240cagcctccca agtagctagt
attacagacg cctgccacca cgcccggtta atttttgtac 300ttttagtaga gacaggtttc
accatattgg ccaggctggt ctcaaactcc tgacctcagg 360tgatcctcct gcctcagcct
cccaaagtgc tgggattaca ggcatgagct accacgtctg 420gcctaagtgc atgttaccta
tactaacaaa accacacttc tgcctcgaat gagaacagtc 480tcctgaacat cttgcctctt
tgcctgactc aaagcctcag gtctaagcct ccccataatt 540tctagtctca gcagaaagat
caatgacagg agactctcca ggtgatgaaa ttaaccaatt 600aagtaacctg ggttggcatc
ctcccgtttg ttcaccagct cacctcctgc cacaggtata 660tcctttctct cagccatata
tgcacaaacc ccctncccac ggcacacata gaagaatttg 720gaagactaga aaatcaggca
nggtatagca caccttggag ggctggagta tggtagcctg 780ggc
78318770DNAHomo
sapiensmisc_feature(1)..(770)n is a, g, c, or t 18tccgggnncc gcttgccaaa
ccttcaggtg gggtctttca ctacaagata gtacaacagg 60acatttttta aaacctcaaa
catcaccaaa atttctaagt gcaagtttat ttttattttt 120tttttttttt ttgagacaga
gtctcgctct gtcacccagg ctagagtgca gtggcatgat 180cttggctcac tgcaacctcc
acctcccagg ttcaagtgat tctcttgcct cagcctccca 240agtagctagt attacagacg
cctgccacca cgcccggtta atttttgtac ttttagtaga 300gacaggtttc accatattgg
ccaggctggt ctcaaactcc tgacctcagg tgatcctcct 360gcctcagcct cccaaagtgc
tgggattaca ggcatgagct accacgtctg gcctaagtgc 420atgttaccta tactaacaaa
accacacttc tgcctcgaat gagaacagtc tcctgaacat 480cttgcctctt tgcctgactc
aaagcctcag gtctaagcct ccccataatt tctagtctca 540gcagaaagat caatgacagg
agactctcca ggtgatgaaa ttaaccaatt aagtaacctg 600ggttggcatc ctcccgtttg
ttcaccagct cacctnctgc cacaggtata tcctttttct 660tagccatata tgcacaaacc
cccttcccac ggnacacata gaaaaatttn ggaagactag 720aaaatcaggc agggtntagc
acaccttngn gggctnggag tntnggtanc 77019774DNAHomo
sapiensmisc_feature(1)..(774)n is a, g, c, or t 19tccgggncnc gcttgccaaa
ccttcaggtg gggtctttca ctacaagata gtacaacagg 60acatttttta aaacctcaaa
catcaccaaa atttctaagt gcaagtttat ttttattttt 120tttttttttt ttgagacaga
gtctcgctct gtcacccagg ctagagtgca gtggcatgat 180cttggctcac tgcaacctcc
acctcccagg ttcaagtgat tctcttgcct cagcctccca 240agtagctagt attacagacg
cctgccacca cgcccggtta atttttgtac ttttagtaga 300gacaggtttc accatattgg
ccaggctggt ctcaaactcc tgacctcagg tgatcctcct 360gcctcagcct cccaaagtgc
tgggattaca ggcatgagct accacgtctg gcctaagtgc 420atgttaccta tactaacaaa
accacacttc tgcctcgaat gagaacagtc tcctgaacat 480cttgcctctt tgcctgactc
aaagcctcag gtctaagcct ncccataatt tctagtctca 540gcagaaagat caatgacagg
agactctnca ggtgatgaaa ttaaccaatt aagtaacctg 600ggttggcatc ctcccgtttg
ntcaccagnc tnacctnctg ncacaggnat atncttttnt 660ttnagccata tntgcacaaa
ccccctnccc acggnacaca tagaaaaant tnggnagact 720ngaaaattca ggncagggnt
tagcncnccc ttgggggnnt ggnntntngg aacc 77420914DNAHomo
sapiensmisc_feature(1)..(914)n is a, g, c, or t 20tggggntncc ggtatcgccg
cttccgattc gcagcgcatc gccttctatc gccttcttga 60cgagttcttc tgagcgggac
tctggggttc gaaatgagct agcccttaag taacgccatt 120ttgcaaggca tggaaaaata
cataactgag aatagaaaag ttcagatcga ggtcaggaac 180agatggaaca gggtcgaccg
gtcgaccggt cgaccctaga gaaccatcag atgtttccag 240ggtgccccaa ggacctgaaa
tgaccctgtg ccttatttga actaaccaat cagttcgctt 300ctcgcttctg ttcgcgcgct
tctgctcccc gagctcaata aaagagccca caacccctca 360ctcggggcgc cagtcctccg
attgactgag tcgcccgggt acccgtgtat ccaataaacc 420ctcttgcagt tgcatccgac
ttgtggtctc gctgttcctt gggagggtct cctctgagtg 480attgactacc cgtcagcggg
ggtctttcac tctctgtgta ctggtaccaa cagagcctgg 540accagggcct ccagttcctc
attcagtatt ataatggaga agagagagca aaaggaaaca 600ttcttgaacg attctccgca
caacagttcc ctgacttgca ctctgaacta aacctgagct 660ctctggagct gggggactca
gcttttgtat ttctgtgcca gcagcgtagg tggtagcttg 720aaacagttct tcngggccag
gggacncggc tnaccgggnn aggtaagaag ggggcctcca 780ggtgggaaan aagggtgagc
agnccanccc tgcacgaccc nnnaaccntn ttcttagggg 840gaggggnnca ctgggncatn
ncagggccnt cntngnggaa nnggggtttg cgccnagggt 900ccccagggct gngc
914211604DNAHomo
sapiensmisc_feature(1)..(1604)n is a, g, c, or t 21gngtggnatt gtgagcggat
aacaatttca cacagnaatt cagtaaatgt tgatgtcaca 60ttgggggcag cagctctagc
tacattcaac tctacctgaa aactggcttt tagtataagc 120catggatcca taacacatag
gctagtttac aacaagtaat ttcagcattt ttggataatt 180acattccctc cgacaatttc
taaggagcct gcatgatact gaactgtgtc agaaaatagg 240tgctacagtg aatatgtgat
tctaatcagg cttttttact atggaattat agtaaaatgc 300actataatca actcatataa
attgctctgt gcctatactt atctctaatg aagggaagca 360aattgcctta cctgaaatta
taaaagaaaa tgattacaaa ggtatggaag tttataggca 420tcttataaga cctgatttta
ttatgcatta tatagatggc aaaaaattcc tatttatcca 480gaatctaaat gaccaggaag
ctcaaataaa atgtgtttca tgggaatttg tttttatgtg 540ctgaattgca agatcctgaa
gggtctttaa gatcatcaaa gaaacatgaa tgctcacaca 600actttagagc tgtaagaggt
gtggagttca catggcccaa cctgtccatt tgacagctgc 660gtgctgagcc caggggagag
catggcttgc ccaatgaatt tgtgacaaag cgagacctgg 720rgnnaccttt cagtttccct
yataccccac aaatgggtct ttgtgctcta ctaggkgnaa 780tggtattaaa taccacagnc
cttttgtgta ttctaantyc ttagaaattt cctaatttat 840gcatgggycc mcccttgcta
aaatttcagc atacaccatg atatcttaga gctcccttcc 900cacttaatct tctctcttag
cattttcacg atttaaaaaa atcatctgta ttccccatta 960gcaggcaaga ttcctaagga
caaataactt tttttctttt attcactgct gaatcaccta 1020gaacggtacc cagcacaaag
tgagaggttg agaaatagtt gttgaatgaa aaaaaaaatg 1080aatcgtttat gataatcctc
aaatcccatc actgcattat cagaataccc cattttttat 1140gtcatctatt tgacactttt
ccagaacttc tgatgtgcca ggcattttac aaggctgagg 1200tgaaccacag agtaataggc
ttattttatt cattcaggga gcttaattta aggtgatcct 1260attattgtaa cctcctaatg
caatgtcatc tcttatcagc ttaattctgc agactgtagc 1320tatgtattac tccctgaagg
aattattttc accttcaacc tgaagttagg actcatgatt 1380cagcaatctg ctttctggga
tcatacaagg gaaattgcaa tctttgtgct tgcttgccaa 1440agctgagaaa gatggagcag
natcaaaata agcaggattt gccaggcaat tttgacatat 1500tcttcctctc acatataacc
atcacaaagt aatgcatttc ataatgagaa ganccttgca 1560ctagaagcat acatagtatc
acatgnctca tcttctngnt tctn 160422844DNAHomo
sapiensmisc_feature(1)..(844)n is a, g, c, or t 22ttggggancc gcttgccaaa
cnttcaggtg gggtctttca agaggtctcc agacctaggg 60gagcatctca gcgtcactcg
ctgtccagtt gctgtgatca ggtgctttgg ggtttgtgtg 120actccagaat ccactgggcc
tgtgtgtcag aagacaaaag ttaaccataa ggcacagaag 180aaagcctcct gctgaagcca
tcgttggccc acatgcattt cagggacaag aaatgaagat 240cggagacttt caagttgtgc
ccaggactca cctgctccca ggagacaaaa ggccacacag 300cagaggagcc tgaagcccat
ggcaggatct cctagcttgg ggctggtgtc tctgtagtaa 360gcattctgaa gttcctaagc
tcccttcttc ctgataggag cattgacctg tgatgtcacc 420acactgacat actttcccct
gcaggccact ccagcccact gtactctttg gcaggcctca 480ggttctgcta ctccatgtac
tattcctgtc ttgcacaggc cagaagctaa aggtgaggag 540gactgaacac agtaccaaca
tacccacatc acaccttact ttcctctgcc cgccctgtcc 600ctgccctgac actgattccc
cagcccttgc accccagccc cttcaccctc cactgcccgt 660gcagcagcag agacactccc
tccttgatgc aaactgaggc ctctggcacc cnactctttc 720agggcaatga tagtctgtgc
ttaactctac atggccaggc cccactcagg gaattcttat 780gaaattatta tttttttnta
tttctgggaa acaaagcgat gtatttattt ctgtttnggg 840gata
844231562DNAHomo
sapiensmisc_feature(1)..(1562)n is a, g, c, or t 23ttttacanaa ctnncccccc
tnaatcaaca gaatatacat tttnttnagc cccncaatac 60acttattcta aantgnccca
cataatngga agtaaaccac tcagcaaata taaagancag 120aaatcccanc aaactgtctc
tcagaccaca gtgcaatcaa attagaactc agggttaaga 180atcacactca aaaccacaca
actacatgga aactgaacaa cctgctcctg aatgactact 240gggtaaataa tgaaatgaag
gcagaaataa acacgttctt tgaaaccaac tagaacaaag 300acacaatgta ccagaatctc
tgggacacat ttaaagcagt gtgtagaggg aaatttatag 360cactaaatgc ccacaagaga
aagcaggaga gatctaaaat cgacatccta acatcacaat 420taaaagaact agagaagcaa
gagcaaacat attcaaaagc tagcagaaga cgagaaataa 480ctaagatcag agcagaactg
aaggagatag agacacaaaa aaaaccttca aaaattaatg 540aatgcaggag ctggtttttt
gaaaagatca acaaaatagc cctctagcaa gactaataaa 600ggataaaaga gggaagaatc
aaatagatgc aataaaaatg ataaagggga tatcaccacc 660aatcccmcmg aaatacaaac
taccmtcaga gaatactata aacmcctgta tgcaaataaa 720ctagaaaatc tagaagaagc
agataaattc ctggacacat acaacctccc aagactaaac 780caggaagaag ttgaatctct
gaatagacca ataataggtt ctgaaattga ggcaataatt 840aatagcctac caaccaaraa
aagtcgagga ccagatggat tcacagccgt attctaccag 900aggtacaaag aggagctggt
accattcctt ctgaaactat tctgatcaat gagaaaaaag 960ggaatcctcc ctaactcatt
tatgaggcta gcatcatcct gataccaaag cctggcagag 1020acacaacaaa aaaagaaaat
ttcaggccaa tatccctgat gaacattgat gtgaaaatcc 1080tcaatacaat actggcaaat
caaaaagctt atccaccacg atcaagtcag cttcatcgct 1140gggatgcaag tctggttcaa
catatgcaaa tcaataaaca aaatccatca cataaacaga 1200accaatgaca aaaaccacat
gattatctca atagatgcag aaaaggcctt caacaatatt 1260caacagcctt tcatgctaaa
aactctcaat aaactagata ttgatggaac atatctcaac 1320ataataagag ctatttatga
caaacccata gccaatatca tactgaatgg gcaaaaactg 1380gaagcattcc ctttgaaaac
cagcacaaga caaggatgcc ctctttcacc acttcgattc 1440aacctagtat tggaagttct
ggccagggcc atcaagcaag agaaagcaat aaggggtatt 1500caagtaggaa gagaggggnt
ttctgtgtga aaangttanc cgctggnnan ccccaaanan 1560aa
1562241446DNAHomo
sapiensmisc_feature(1)..(1446)n is a, g, c, or t 24ttggtactgt cagaccaagt
ttactcatat cggatccgag gagcaggcgg gcctgaggcc 60gagtcagctg cgcgggcccc
cggatcctgg gctgtcatgt aacatcttcc aataaatgtg 120atcttgggag gagaccattt
tgggccttgg tttccacatc tgcgaaatgt tattatagcc 180atgaacactt actgaaagct
taccccatat gccagacaca tcttccaatc aacttatgtg 240agttatctca tttaattttc
acaacaatac aaagtagcgg ggaaaacttc tggcttctct 300tgaaaactca gaaaatctaa
caatgttgag tatgagtcca aaatgtcagc aagaagccag 360agctgaatag ggaaggctgt
tttagatgag accattagcc acagacctca ccactcttct 420tactgtgcta cttatttcct
ttatagtacc tgagtggttc ctgctgcgtg tgggtttgtg 480gcccctgcat tagatggncc
ttnatnattc ctcttcaccc ctgagctttg atgttttttg 540ctccatgtca ccttcaccag
agtggtcagg ccattcttca atattcwkac ctrggcaaaa 600ggtgcatgac tttgaactcc
cctagttaag ttaaggcttc takaawgaac angannangc 660tttgggagct gaggaagggt
gctcactgtg ccctataaaa tagagtttca atagacactg 720ggtcctctgt ggcctgacct
cccctgtgtc agcaacttga gtctcacttg aatggggaaa 780gaaagtawtg arangaaakg
aacwwkgaam ytcwgaaaca ngacctcttm akanswarcm 840aggrccctms tagtctanyt
wrggtaaagc caagtgtgac cctaaggcaa gttacttaac 900ctctgcgtct cagtttcctc
atctataagt taatgacaac ctctacccca taagggagct 960tgaaagaaaa tccaaaaaag
aaagaatctc tttgagttgc taatgactct taagtttctg 1020gttctagtcc tttgaccatc
atgacagtcc tatggtttta cgaaagaact atccatctct 1080atttaaaaaa caaaaaacac
aaagaccttt tttgcttaag ctaacttgtg ttgggtttca 1140tccaccagga agttagagag
agaaattact tagagataaa cttacacatt acaaatcctt 1200ctgttctgtg tgcttttaaa
aatgttcaat ttctaaatgg gcctctggtg aagataatga 1260tcacctcatt gatttgttcc
caggagaaca gggtaaaatg aagtcctgct gatcacattt 1320tctaaatctt tttantccca
ttgctttggg aaagtttcta caccagtnat ccttntacag 1380cctccctctt tcccatggtt
cnttctctgc accaccagga aaggaggaat cccanancag 1440tcttgc
144625840DNAHomo
sapiensmisc_feature(1)..(840)n is a, g, c, or t 25ggaattgnna gcggntaaca
atttcacaca gnaattctta ttatggtaag ttcctgagat 60ttgagatggt ttgttataca
acagggaact gataggctta ttcttcaaga ggagcaaaac 120agggatgatt gctattctct
tcaatgggtt gaggaaagaa gaaattatgt gaacatttat 180acactaataa tttattctgt
catatttcag tcagattaaa gcaaacagcc aaaaacaagg 240acaaagtcca aggtaagaga
ctgatgataa gtggcctgtt tacaaggaaa ataagatcac 300tagctctact tacagctgat
tcagaataac ttcattttta aagcctaaaa ttttacagtc 360aagctcttga gtgcaatttc
cttaacattt tctaaaccat acagaaaatc ataaagaaac 420aatatttctt tgtttgagtt
tcctttttag gagttaggtc ttattttaaa aatattttct 480agcctgttta ggctcttatt
taaaattatc tacttttctc aaagtctttc tcatacttga 540gatatccaaa atattgaatg
agtgatgtaa actataccag ataaactatg agtctatatt 600tttaccctga ttcagtcagt
ttccaaggag aactttgaac aactaaaaat gtgtattact 660ataatctctc tgaaatattn
ctnattaatt ttttgggggn aaaatgagtc attctgagcc 720aaaaaaaaaa anggtnacca
gacantttcc actnctaact tgnntgggcg attncagcag 780attcaanttc cagcatnggn
agatncggna gatnnnggnc ctaccatgan cttaccttcc 84026861DNAHomo
sapiensmisc_feature(1)..(861)n is a, g, c, or t 26ttttnctcct aacttgagtt
ggcgatatca gcagattcaa attaccagca atgggaagat 60acaggaagat gtaggtacct
accaatgagc ttaccttccc agtgctctat ataacctcac 120ttctatagcc caaagtatta
aaaagaagaa aaaataataa ttcaggctta ctatttaaaa 180atacagtgat tctggccggg
cacggtggct cacgactgca atcccagcac tttgggaggc 240cgaggcgggt ggatcacgtg
aggccaggag tttgagacca gcctggccaa tgtggtgaaa 300ccctgtctcc actaaaaata
caaaaattag ctgggcatgg tggcgggcgc ctgtaatccc 360agctactcgg gaggttgaga
tgggagaatt gcttggaccc aggaggcaga gcttgcagtg 420agccaagatt gcaccactgc
attccaccct gggtgacaga gtgagaccct gtctcaaaaa 480acaaataaaa atacagtgat
tctgagaggc cttccctttc cacaccacct cctacttgtt 540tgatagctct catcccattt
tcctcaactg ccacatatgg ccaggacttc cacagtgtat 600taaacatctt ctttggacaa
gagaaatttc actgaagcaa tgagtgtaga agttattagc 660atgaattgaa gactgatgct
ggcacacaaa tagggagaca catcaatata atgacctaat 720gaatctagaa atagcttcan
gaantntgga aaagtagatg tgataaaagn tgcatttnaa 780tcanngagca aagtnttaat
anaattgaga cacctatgtn gctattngga aacattaang 840tnggntgcat antngaaact t
86127875DNAHomo
sapiensmisc_feature(1)..(875)n is a, g, c, or t 27ttgggnnacc gcttgccaaa
cctacaggtg gggtctttca agaggtctcc agacctaggg 60gagcatctca gcgtcactcg
ctgtccagtt gctgtgatca ggtgctttgg ggtttgtgtg 120actccagaat ccactgggcc
tgtgtgtcag aagacaaaag ttaaccataa ggcacagaag 180aaagcctcct gctgaagcca
tcgttggccc acatgcattt cagggacaag aaannnagat 240cggagacttt caagttgtgc
ccaggactca cctgctccca ggagacaaaa ggccacacag 300cagaggagcc tgaagcccat
ggcaggatct cctagcttgg ggctggtgtc tctgtagtaa 360gcattctgaa gttcctaagc
tcccttcttc ctgataggag cattgacctg tgatgtcacc 420acactgacat actttcccct
gcaggccact ccagcccact gtactctttg gcaggcctca 480ggttctgcta ctccatgtac
tattcctgtc ttgcacaggc cagaagctaa aggtgaggag 540gactgaacac agtaccaaca
tacccacatc acaccttact ttcctctgcc cgccctgtcc 600ctgccctgac actgattccc
cagcccttgc caccccagcc ccttcaccct ccactgcccg 660tgcagcagca gagacactcc
ctccttgatg caaactgagg cctctggcac cccaactctt 720tcagggcaat gatagtctgt
gcttaactct acatggccag gcccccactc agggaattct 780aatatgaatg taaactncag
gtgttgncag ctagtgcttc cntggaaaan cccctgttnc 840agctnctaca catgctctta
tctntagctn ganca 87528901DNAHomo
sapiensmisc_feature(1)..(901)n is a, g, c, or t 28ctncttctng ggngtnnnnn
nacnatntan nnnnatcgnc tcnacantnn nttncnnggg 60aaaaacctct gtctaacctt
acatgaaaaa acccgtttcc aacgaaggcc tctaagaggc 120caagatatcc acttgcagac
tttacaaaca gagtgtttcc aaactgctga atgaaaagaa 180aagttaaact ctgtgagttg
aacgcacaca tcacagagca gtttctgaga atgattctgt 240cgggttttta tacgaagata
ttcccttttc tgcctttggc ctcaaagcgc ttgaagtctc 300cacttgcaaa ttgcagaaaa
agagtgtttc gaatctgctc tgtctaaaag aaggttcaac 360tctgtcagtt gaatacacac
aacacaagga agttactgag atttcttctg tctagcctta 420catgaaaaaa acccgtttcc
aacgaaggcc tcaaagaggt caaaatatcc acgtgcagac 480tttccaaaca gagtgtttcc
aaactgctga atgaaaagaa aagttaaact ctgtgagttg 540aacgcacaca tcccagagca
gtttctgaga aagattctgt ctagttttta taggaaaata 600tttccttttc tgcttttggc
ctcaaagtgc ttgaaatctc cacttgcaaa ttccacaaaa 660agagtgtttc aaatctgctc
tgtctaaagg aaggttgaac tctgtgagtt gcatacacac 720aacacaaaga agttactgag
aaatcttctg tctagcataa tatgaagaaa tcccgtttcc 780acgaaggcct caagaggncc
aatatncact ggcaggcttn caacagagtg ttnctactgc 840tctgtgaaag aangntaact
ttgnngttga ccaccatnan aagnnttttg naanatttgn 900n
90129856DNAHomo
sapiensmisc_feature(1)..(856)n is a, g, c, or t 29cntttggnng tttaaaangg
gcnganatat gcttnacatc nattgggggn aaacctcttg 60cgtgagtatt caagaaccct
ctcttgggat ctggatcggg acccctttcc tgtaacatat 120gcaaggaaag aaatgcagag
gaatggaact gagccatgga acagacattt ggggttgggc 180aggaggagtt agcagagaga
tctgcatagc tcttatccta cttagcacta gtgctgttca 240aggtagaact cacagcataa
gaattctagc atctgcataa atttggagag caacttgcct 300tctccttaga tacacgaata
tggaaaatgc aatagaagtt gcttatcatg cactcaggtt 360gagtgaagtt ttatcataat
gaagctaaat gaaattccca aattgctctg gtggagagga 420acgccttgat attccacttg
tggaaaaatg gctctatgcc aaaaataaag ttacatcaac 480ctcagtacag gagaaatcag
agtttctgct cacagcagca gcagaggaat catctgcaac 540acagagactt ttgggttgta
tgtaaggcag ccttgctgga tggtctttaa cagggttttg 600gtagggacat ggtagaggct
ggttcctaaa ctcttcaaac gtttcttccc agccctttag 660ctttgacctc acgtgcagag
ttgagttaat tataagcctt atttatgggc acactttcac 720cattaagttc atacacagcc
ccatttttgt gccattcttc actcctatgt ccttttctcc 780cctaagcaac catgtaaaca
tgttagagng ggngagcgtg cacacnccat acacacacat 840tcatttacac atgatt
85630890DNAHomo
sapiensmisc_feature(1)..(890)n is a, g, c, or t 30cnnnttctgg gggngtannn
aactaannna nntnaatncc ncccaatnnn ttcggggggg 60aaaancccca gnactccata
attcncaagn atcacatgna tcacaggaga ggagactggg 120ggagtcaatg gatagaggat
ttataagcca agaaaaaaaa atggagcccc aaactgtgaa 180atccaagaag ggggtcatgt
gaaccccaat ttatagccag tttttcagaa gaataagtga 240caacctacta cttgtgattg
gcacttgaag tgggaggcag tcgtgaggga gttaatatgt 300gggaactaac cctactctag
gtagtgttga attgaatcaa atcataggac atctagttgg 360tgtttgctgg aaaactggtt
gttggtggag tgaaacccct acatattttg gtgatcagag 420gtgaagtgtt gtgttaagtg
gtatgagact gggaaaaaca ctttggtttt tcctgtctct 480cacagaatta aagtttccaa
gagaagcatc agaagagtgg aaggttggga ccagcaaacc 540acaagcccta ggccccaaac
tagggtcaag tggaaaagca gggtataata gtgaaatggc 600cctcctctcc acttctgcag
ctccagtgac gctgttccta ctcattgtca cactggaatg 660gttgcaggat gaacacgatc
ctctggaaat ggagacatct tctgaaggta gaggaaactg 720cagtcttcct gcccccgacc
gccactcgca gaggttggga atgtcagcct nctccaaccc 780antcttttnt atgggatttt
ccttactttg gggggggact gnaatgntac ctatcttttt 840tttacaantt gggggggntc
cnccccactt anngacccng nttnnccnng 89031732DNAHomo
sapiensmisc_feature(1)..(732)n is a, g, c, or t 31attcttttgg gnaccgtcag
naccaagttt tactcatatc ggcatcctct ctcggtggct 60gctgcagcgg ggctggtgtg
ctgcaacccg gacggagctg agtgaggggc acaatggcag 120caacctgcag gcaccaaaga
gcccccaaga gctgctcagc ggtgcctgat caaagtttgt 180ctgggccagt gcttgtgcat
tgtgtacgct gtgcgacaac caggaaggag agctgggttt 240tgccatcctc caacgcttct
taaataggaa actttttggg tagcacctgg cctagttcct 300ggaacacaga aggtgctgag
tgatgttagt ttcattcgct catcttgtct cttgggcatg 360gaaaagagtt tacaagtgct
ctttcattat ccatcttgat gtgggaaggt ggggcagggg 420aagatgagta cccgctctcg
ccctttggtg tgatgtttgt gacgtacatg aggcatgtgg 480gagagtggat cacagcattg
gacagactgg atcccttctg gtcccacatc actcaggcaa 540ctctctcttc ccacctgccc
cccaaactcc cttncacctc cctccacatg tatcctccca 600cttncttcca ctcatgtaat
gagaggtgct gatgagtcac aggaagaggt agccctagat 660aaccaacaga ctgcaaaacg
ggacagtncc ntggatgtct gagccagtgt ttngngcact 720gcattgactg gc
73232672DNAHomo
sapiensmisc_feature(1)..(672)n is a, g, c, or t 32tttggnaacc gtcagaccaa
gtttactcat atcggatccc aggagacacg ctccaagggc 60tgggtgggaa aagccccaga
aaggggaggg ctgcggggag tgagaatcgg gatggacctc 120acagacgaca aacagatgga
caaaaagctt ctctccctgc cgctccctcc ccgccaccaa 180ctccagcccc tctgtctcca
tccccttttc ctgtctgtcc tgtctgaatc tctgaatctc 240tgcctgtttn tttttctctc
tatgaatcac agcgtttcag agcctctgag agaaaaatgg 300gaaaagaaga cagagatgat
agaaaatgca gagtgtgcgt gtgtgtgtgt gtgtgtgcat 360gtgtatgcgc gcgtgtgtgt
gtgtgtctgt gcatgcgtgc acccagcatg aagtctggtc 420tggagaatgt aactagggag
ggaggaagag aggggacgag agaagcagag gatgaacaaa 480gagactttcg aagctcatag
gaaaaagcct gggaggcaac agcagcaggg acacgcatat 540gccgcacacc cctacacaca
ccacacacca cacaccacac acaccctgca tgcaccctgg 600agacatgccc cagactccag
gcgggagggg tggagcaggg ggtgtgaaat atggttggtt 660gggttgggtt tg
67233770DNAHomo
sapiensmisc_feature(1)..(770)n is a, g, c, or t 33nttttgnant gtncgcggnt
aacaatttca cacagnaatt cattttaacg ttgtacatat 60ttattataca agaaatattt
tttccatcaa aaagtactca ttcaaaaaat atttaatcta 120gaatagagat tataaatttt
taacttaatt ttattttttt cttaaggaaa actctaagat 180atcattacca ttttcaaaac
tgtcaagtag tggtgaatga cacttcttat atgttaattt 240ttaaaagaat atttctaaca
cacattctta atggagaatt atatcttata cagaatgata 300cattctaagg gtgatgttta
tgaaagaaat ttaagcttgg ttaacatgct tagtaaaatt 360ttttaataca aataaaattc
agagtatatg gtgtgaagtg agttatatgg tgcaaatact 420attttaattc ttgaacactt
ccacaaaatt agcttgtaaa ataaaattaa acccacactg 480agatgctaga tttgcagatg
aatcattcat ttttttacat ttctttttat ttctctaact 540aaattatatg acagaaggca
agggtcatga ttaattcatt gttgtattct ttatatatta 600aatataagct cctcaataaa
tattatggaa aaaatgaaca aacacttcac attttattgt 660tttctatatt tttcaaggtt
tttattaatt cttcatgtgc tttgtgactt tattttctcc 720aaagaaattc ttcttgaaat
gaaaagttca caanagttag gataactgga 77034777DNAHomo
sapiensmisc_feature(1)..(777)n is a, g, c, or t 34nttttgnatt gtngcgcggn
taacaatttt cacacagnaa ttcttttgtc aagaattata 60agaagaaatc ccgtttccaa
cgaaggcctc aaagagttcc aaatatccac ttgcacactg 120cacaaactaa gtctttccaa
actgctctat gcaaagaaat gttcaactct gtgagtttaa 180tacacacatc acaaagcagt
ttctgagaat gatactgtct agtttttata cgaagatatt 240tccttttgta ccattggcct
catactgcta gaattttcca cttgcaaatt ccacaaaaag 300agtgtttcca atccgctctg
tctaaaggaa ggttcaactc tctgatttga atacatacat 360cccaaaagaa gttactgaga
attcacaaga acaaacgaaa aaaaaaatgg taattaaggt 420caatataaaa cgtagattgt
cacttcaaga aaatacctgc cttatacaga actaagtggc 480tgtttcaagt aaaaatggtg
ttccatgaaa aagctgctag ttcagctggc aactcaaaca 540atggcacaag tgccttatgc
catttctatt ttatcacaca tattaaaaac ctggccagca 600cggtggctca tgcctgtaat
tccagcattt tggnaaggcc gaggcaggtg gatcatttga 660ggccagnagt tcaagacang
cctggccaac atagcaaaac ccccattttt actaaaatac 720aaaattagcc aggcntgggg
gcgcgtgcct gtantccnnc ttctcgggag gctgagg 77735799DNAHomo
sapiensmisc_feature(1)..(799)n is a, g, c, or t 35tnnttttgga gtgancgcgg
ntaacaattt tacacaggaa ttctagggtt ggttcatggt 60ttgagacttg agagtggaca
ggtgcctagt tagacctgct ctggatgtgg aggtgtctgg 120tgattagaat gactctttgt
atatctgttc cctctttaat tgcttccttt taacctcaag 180attaggcttt tattgcataa
taaaatgcat atgagccatt cagttttact ccattacctc 240tctggcttag aatgaactat
cagtagaatt aacaaaaatt gcatcataga gttggagaat 300tgccaccaag gaagtgttct
agccatacta cagaaaagat tctccccatg ggattacttc 360tcagtagaat tcagcaacca
attcctggtg aatctatcca agcagagaaa tgaaaacata 420tattcactaa aagacttgaa
cacaaatgct catagcagcc ttaatcaaaa tagagaaaaa 480ctggaaacat ttcaaatgtc
tatcaactga tcaatatata agcaaaatat ataaagcatt 540tgcagacaat aaaaaacaaa
atattgatat atactaaaac atggnatgaa cctcaaagcc 600actatactag atgagagatg
tcagacacaa acctactgta tttgcaagat gccatttact 660tgaaaaatcc agaaaagtcg
catttacaga gacagtaaaa cagataagtg ggctgcctgc 720ggctgggggg ttgnaaaagc
nattttgctg caaatgaact tanggaaatt ttttttgngg 780ggggggngat anaaaattn
79936417DNACanis
familiarismisc_feature(1)..(417)n is a, g, c, or t 36ancttggtaa
ctgtcagnac caagatttac tcatatcgga tccccaggaa tactattctt 60taaagactat
caatattcta caaagggaaa ttagagttct caattgtgaa cggaaaggaa 120catcaatggg
catgacctaa gacctccttc tacacagtta aacaacaatt tcacaagata 180tgatttaaga
gaaagctttc agggacgcct gggtggctca gtggttgagc gtctgccttc 240cgctcagggt
gtgatcctgg agttccggga ctgagtcccc atggggctcc ctgcatggag 300cctgcttctc
cctctgccta tgtctctgcc tctctctgtg tctcatgaat aaataaataa 360agnncttatt
ttttttaaga ttntatttat ttatncatga nagagagaga gaggcng
41737434DNACanis familiarismisc_feature(1)..(434)n is a, g, c, or t
37tggtaactcg tcagnaccaa gatttactca tatcggcatc cccaggaata ctattcttta
60aagactatca atattctaca aagggaaatt agagttctca attgtgaacg gaaaggaaca
120tcaatgggca tgacctaaga cctccttcta cacagttaaa caacaatttc acaagatatg
180atttaagaga aagctttcag ggacgcctgg gtggctcagt ggttgagcgt ctgccttccg
240ctcagggtgt gatcctggag ttccgggact gagtcccaca tggggctccc tgcatggagc
300ctgcttctcc ctctgcctat gtctctgcct ctctctgtgt ctcatgaata aataaataaa
360gtccttattt tttttaagat tttatttatt tattcatgag agagagagag agncngngnc
420ntnggcngng ggng
434381425DNACanis familiarismisc_feature(1)..(1425)n is a, g, c, or t
38cnggncggng angattntng tcgnnaccca tggcgaatgc ctggctngcc gaatattcat
60ggtggaaaat ggccngcttt tctggattca tcgnactgtg nccggctggg tgtggcggac
120ccgctatnca gnacatagcg ttgggctacc cngtgataat gctgaagagc ttggcggncg
180aatgggctga ccgcttcctc gtgskkkanc ggtatcgccg ctcyccgatt cgcagcgcat
240cgccttctat cgccttcttg acgagttctt ctgagcggga ctnctggggt tcgaaatgag
300ctagccctta agtaacgcca ttttgcaagg catggaaaaa tacataactg agaatagaaa
360agttcatctc tgctgtcttt ggccattctc tctaggcatc tgctcatgtg gaggcataag
420aaaatattga catgcttcac attacatttt cagagtatgt tattcatgta atttatttgt
480aaaatctacc aatacaattt ccccccaatc aagtaaaact aggtaaaaag atctctgcaa
540agattagctg aggaagaaac atatgtgagt agaatcagaa tgttaagagc tgacaggtta
600gcagatagca tgcccatgat ttttgtgggt ttggcccctt tgttgaagct aaatcttaca
660gagaggccca accctagagg taaaatgatt aaaacagatg tgctgcagtt ggcggggagg
720gtgctgcgcc aggggaagcc caagactgct gctggctgcc ttccctcctg aycttatccc
780atgtctcatt tgaaaaccaa tagttgaaaa actctcaatt ttcagatgag aacgaaaaca
840aaaatgcaaa gaaggcaaat gattcaytca aarwtactca gtgaatkrga sccawsatgt
900gggaatacaa ctctggcctt ctgtttctga atctagtggt atttccaggc tcacaggaag
960cttcctgtac cttgctccac tgtgtgtgtt tttggatggc cctggtgttt gattacctyt
1020cgtggcaggc ccaacagccc ttgctaaggc acagactgca tatttgctga tccctgaggn
1080ggaaagctgt gattcagact ttgaggtcta agaattgcag acttagtttc tagtctcccg
1140atgaaactgc taatctgggt gccagtggtg tttctgctac acggacacct gcccacacag
1200catgattaga aattataatg atgacggcga tgagtcttcc aggacaccta cgttctttgc
1260aagatatttc tgctaatcgt ctctaccaga atcagttgga gaactttttt tagttttttt
1320tttttttttt taatttcccc ctttctaagt caagtaaaaa tactagttta attnctggtg
1380tagggtaatg atttgtcctc accattactg atgtgtcatt ttttg
142539674DNACanis familiarismisc_feature(1)..(674)n is a, g, c, or t
39caaaaaatga cacatcagta atggtgagga caaatcatta ccctacacca gnaattaaac
60tagtattttt acttgactta gaaaggggga aattaaaaaa aaaaaaaaaa aactaaaaaa
120agttctccaa ctgattctgg tagagacgat tagcagaaat atcttgcaaa gaacgtaggt
180gtcctggaag actcatcgcc gtcatcatta taatttctaa tcatgctgtg tgggcaggtg
240tccgtgtagc agaaacacca ctggcaccca gattagcagt ttcatcggga gactagaaac
300taagtctgca attcttagac ctcaaagtct gaatcacagc tttcccctca gggatcagca
360aatatgcagt ctgtgcctta gcaagggctg ttgggcctgc cacgagaggt aatcaaacac
420cagggccatc caaaaacaca cacagtggag caaggtacag gaagcttcct gtgagcctgg
480aaataccact agattcagaa acagaaggcc agagttgtat tcccacatga tggctctaat
540tcactgagta actttgaatg aatcatttgc cttctttgca tttttgtttt cgttctcatc
600tgaaaattga gagtttttca actattggtt ttcaaatgag acatgggata agatcaggag
660ggaaggcagc cagc
67440666DNACanis familiarismisc_feature(1)..(666)n is a, g, c, or t
40cccatgagca aaaaatgaca catcagtaat ggtgaggaca aatcattacc ctacaccagn
60aattaaacta gtatttttac ttgacttaga aagggggaaa ttaaaaaaaa aaaaaaaaaa
120ctaaaaaaag ttctccaact gattctggta gagacgatta gcagaaatat cttgcaaaga
180acgtaggtgt cctggaagac tcatcgccgt catcattata atttctaatc atgctgtgtg
240ggcaggtgtc cgtgtagcag aaacaccact ggcacccaga ttagcagttt catcgggaga
300ctagaaacta agtctgcaat tcttagacct caaagtctga atcacagctt tcccctcagg
360gatcagcaaa tatgcagtct gtgccttagc aagggctgtt gggcctgcca cgagaggtaa
420tcaaacacca gggccatcca aaaacacaca cagtggagca aggtacagga agcttcctgt
480gagcctggaa ataccactag attcagaaac agaaggccag agttgtattc ccacatgatg
540gctctaattc actgagtaac tttgaatgaa tcatttgcct tctttgcatt tttgttttcg
600ttctcatctg aaaattgaga gtttttcaac tattggtttt caaatgagac atgggataag
660atcagg
66641603DNACanis familiarismisc_feature(1)..(603)n is a, g, c, or t
41cccatgagca aaaaatgaca catcagtaat ggtgaggaca aatcattacc ctacaccaga
60attaaactag tatttttact tgacttagaa agggggaaat taaaaaaaaa aaaaaaaaac
120taaaaaaagt tctccaactg attctggtag agacgattag cagaaatatc ttgcaaagaa
180cgtaggtgtc ctggaagact catcgccgtc atcattataa tttctaatca tgctgtgtgg
240gcaggtgtcc gtgtagcaga aacaccactg gcacccagat tagcagtttc atcgggagac
300tagaaactaa gtctgcaatt cttagacctc aaagtctgaa tcacagcttt cccctcaggg
360atcagcaaat atgcagtctg tgccttagca agggctgttg ggcctgccac gagaggtaat
420caaacaccag ggccatccaa aaacacacac agtggagcaa ggtacaggaa gcttcctgtg
480agcctggaaa taccactaga ttcagaaaca gaaggccaga gttgtattcc cacatgatgg
540ctctaattca ctgagtaact ttgaatgaat catttgcctt ctttgcattt ttgttttcgt
600tct
60342749DNACanis familiarismisc_feature(1)..(749)n is a, g, c, or t
42ggtnactgtn cgnaccagtt tactncatat ncggntnccc atgagcaaaa aatgacacat
60cagtaatggt gaggacaaat cattacccta caccagnaat taaactagta tttttacttg
120acttagaaag ggggaaatta aaaaaaaaaa aaaaaaacta aaaaaagttc tccaactgat
180tctggtagag acgattagca gaaatatctt gcaaagaacg taggtgtcct ggaagactca
240tcgccgtcat cattataatt tctaatcatg ctgtgtgggc aggtgtccgt gtagcagaaa
300caccactggc acccagatta gcagtttcat cgggagacta gaaactaagt ctgcaattct
360tagacctcaa agtctgaatc acagctttcc cctcagggat cagcaaatat gcagtctgtg
420ccttagcaag ggctgttggg cctgccacga gaggtaatca aacaccaggg ccatccaaaa
480acacacacag tggagcaagg tacaggaagc ttcctgtgag cctggaaata ccactagatt
540cagaaacaga aggccagagt tgtattccca catgatggct ctaattcact gagtaacttt
600gaatgaatca tttgccttct ttgcattttt gttttcgttc tcatctgaaa attgagagtt
660tttcaactat tggttttcaa atgagacatg ggataagatc aggagggaag gcagccagca
720gcagtcttgg gcttcccctg gcgcagcac
749431778DNACanis familiarismisc_feature(1)..(1778)n is a, g, c, or t
43gkggtagngn rcggtaaaca atttncacac agcaattncc cctgtgnaaa ctgccttgac
60ttggtgcctt ttttggaggg gtggagttgt ttccactttg acaaattttt atatttctcc
120catcctaatt ggactaattt gcttttatat ctcttctgtg gttattttgt taatcgtatt
180ttaggaaagt cacctatttc aaattgattt gcatggagct aaataatttc ttccaatttt
240ttcatttcct ttgtgtttat ggttatttct acattattag tgaaagtttt gtggttttgt
300gttttagttc tctatctcct cttttgatta gtttcacaga gtttagttgt tattttttca
360gaaaacagct cttgcactta tttatcggct ctactgttct taatttgctc ctaaaaattg
420tcaataatat gtttcttttg ctttgcccgg gctcattttg ttgtttttct aattgtttga
480gcttgactct taattcatct atttttgttt ctgctttttt gttaatgtaa atttaaaaaa
540tgcgagatcc aattagaata agcctcaccg gacaagaacc tgtctgtgca cttcgagact
600accataatgc ctatcacata gcaggtgctt aagcaaaatt tttgtatgaa taaataaacc
660cctatgaaat aattatggga tttgtgtgac agccctcgtt cttctctgct gtctttggsc
720aytctctcta ggcatctgct catgtggagg cataagaaaa tattgacatg cttcacatta
780cattttcaga gtatgttatt catgtattta tttgtaaaat ctaccaatac aatttccccc
840caatcaagta aaactaggta aaaagatctc tgcaaagatt agctgaggaa gaaacatatg
900tgagtaraat caraatgtta agagctrmca ggttarcaga tagcatgccc atgatttttg
960tgggkttggc ccctttgttg aagctaaatc ttacagagag gcccaaccct agaggtaaaa
1020tgattaaaac agatgtgctg cagttggcgg ggagggtgct gcgccarggg aagncccaag
1080actgctgctg gctgccttcc ctccntgatc ttatcccatg tctcatttga aaaccaatag
1140ttgaaaaact ctcaattttc agatgagaac gaaaacaaaa atgcaaagaa ggcaaatgat
1200tcattcaaag ttactcagtg aattagagcc atcatgtggg aatacaactc tggccttctg
1260tttctgaatc tagtggtatt tccaggctca caggaagctt cctgtacctt gctccactgt
1320gtgtgttttt ggatggccct ggtgtttgat tacctctcgt ggcaggccca acagcccttg
1380ctaaggcaca gactgcatat ttgctgatcc ctgaggggaa agctgtgatt cagactttga
1440ggtctaagaa ttgcagactt agtttctagt ctcccgatga aactgctaat ctgggtgcca
1500gtggtgtttc tgctacacgg acacctgccc acacagcatg attagaaatt ataatgatga
1560cggcgatgag tcttccagra cacctacgtt ctttgcaaga watttctgct aatcgnttnc
1620tctaccagaa tcagttggag aacttttttt agtttttttt tttttttttt aatttccccc
1680tttctaagtc aagtaaaaat actagtttaa ttctggtgta gggtaatgat ttgtcctcac
1740cattacttga aagaccccac ctgtaggttg gcaagcgg
177844868DNACanis familiarismisc_feature(1)..(868)n is a, g, c, or t
44ttcctgagac ngcttgccaa acctacaggt ggggtctttc aagtaatggt gaggacaaat
60cattacccta caccagaatt aaactagtat ttttacttga cttagaaagg gggaaattaa
120aaaaaaaaaa aaaaaactaa aaaaagttct ccaactgatt ctggtagaga cgattagcag
180aaatatcttg caaagaacgt aggtgtcctg gaagactcat cgccgtcatc attataattt
240ctaatcatgc tgtgtgggca ggtgtccgtg tagcagaaac accactggca cccagattag
300cagtttcatc gggagactag aaactaagtc tgcaattctt agacctcaaa gtctgaatca
360cagctttccc ctcagggatc agcaaatatg cagtctgtgc cttagcaagg gctgttgggc
420ctgccacgag aggtaatcaa acaccagggc catccaaaaa cacacacagt ggagcaaggt
480acaggaagct tcctgtgagc ctggaaatac cactagattc agaaacagaa ggccagagtt
540gtattcccac atgatggctc taattcactg agtaactttg aatgaatcat ttgccttctt
600tgcatttttg ttttcgttct catctgaaaa ttgagagttt ttcaactatt ggttttcaaa
660tgagacatgg gataagatca ggagggaagg cagccagcag cagtcttggg cttccctggc
720gcagcaccnt cccgccaact gcagcacatc tgtttaatca tttaacctct aggntgggcc
780tttctgtaag atttagcttn acaangggcc aaacccaaaa aatcatgggc atgcttctgc
840tacctgncan tntaacattt gattntac
868451237DNACanis familiarismisc_feature(1)..(1237)n is a, g, c, or t
45ggtatcgccg ctcccgattc gcaccgcatc gccttctatc gccttcttga cgagttcttc
60tgagcgggac tctggggttc gaaatgagct agcccttaag taacgccatt ttgcaaggca
120tggaaaaata cataactgag aatagaaaag ttcatctctg ctgtctttgg ccattctctc
180taggcatctg ctcatgtgga ggcataagaa aatattgaca tgcttcacat tacattttca
240gagtatgtta ttcatgtatt tatttgtaaa atctaccaat acaatttccc cccaatcaag
300taaaactagg taaaaagatc tctgcaaaga ttagctgagg aagaaacata tgtgagtaga
360atcagaatgt taagagctga caggttagca gatagcatgc ccatgatttt tgtgggtttg
420gcccctttgt tgaagctaaa tcttacagag aggcccaacc ctagaggtaa aatgattaaa
480acagatgtgc tgcagttggc ggggagggtg ctgcgccagg ggaagcccaa gactgctgct
540ggctgccttc cctcctgatc ttatccccat gtctcatttg aaaaaccaat agttgaaaaa
600ctctcaattt tcagatgaga acgaaaacaa aaatgcaaag aaggcaaatg attcattcaa
660agttactcag tgaattagag ccatcatgtg ggaatacaac tctggccttc tgtttctgaa
720tctagtggta tttccaggct cacaggaagc ttcctgtacc ttgctccact gtgtgtgttt
780ttggatggcc ctggtgtttg attacctctc gtggcaggcc caacagccct tgctaaggca
840cagactgcat atttgctgat ccctgagggg aaagctgtga ttcagacttt gaggtctaag
900aattgcagac ttagtttcta gtctcccgat gaaactgcta atctgggtgc cagtggtgtt
960tctgctacac ggacacctgc ccacacagca tgattagaaa ttataatgat gacggcgatg
1020agtcttccag gacacctacg ttctttgcaa gatatttctg ctaatcgtct ctaccagaat
1080cagttggaga acttttttta gttttttttt ttttttttta atttccccct ttctaagtca
1140agtaaaaata ctagtttaat tctggtgtag ggtaatgatt tgtcctcacc attactgatg
1200tgtcattttt tgctcatggg atccgatatg agtaaac
123746703DNACanis familiarismisc_feature(1)..(703)n is a, g, c, or t
46ccctgtgaaa ctgccttgac ttggtgcctt ttttggaggg gtggagttgt ttccactttg
60acaaattttt atatttctcc catcctaatt ggactaattt gcttttatat ctcttctgtg
120gttattttgt taatcgtatt ttaggaaagt cacctatttc aaattgattt gcatggagct
180aaataatttc ttccaatttt ttcatttcct ttgtgtttat ggttatttct acattattag
240tgaaagtttt gtggttttgt gttttagttc tctatctcct cttttgatta gtttcacaga
300gtttagttgt tattttttca gaaaacagct cttgcactta tttatcggct ctactgttct
360taatttgctc ctaaaaattg tcaataatat gtttcttttg ctttgcccgg gctcattttg
420ttgtttttct aattgtttga gcttgactct taattcatct atttttgttt ctgctttttt
480gttaatgtaa atttaaaaaa tgcgagatcc aattagaata agcctcaccg gacaagaacc
540tgtctgtgca cttcgagact accataatgc ctatcacata gcaggtgctt aagcaaaatt
600tttgtatgaa taaataaacc cctatgaaaa aattatggga tttgtgtgac agccctcgtt
660cttctctgct gnctttggcc attctctcta ggcatctgct cat
70347304DNACanis familiarismisc_feature(1)..(304)n is a, g, c, or t
47ctagcttgcc aaacctacag gtggggtctt tcaagtaatg gtgaggacaa atcattaccc
60tacaccagaa ttaaactagt atttttactt gacttagaaa gggggaaatt aaaaaaaaaa
120aaaaaaaact aaaaaaagtt ctccaactga ttctggtaga gacgattagc agaaatatct
180tgcaaagaac gtaggtgtcc tggaagactc atcgccgtca tcattataat ttctaatcat
240gctgtgtggg caggtgtccg tgtagcagaa acaccactgg ncccccagat nagagttttc
300ttgg
30448735DNACanis familiarismisc_feature(1)..(735)n is a, g, c, or t
48agcttgccaa acctacaggt ggggtctttc aagtaatggt gaggacaaat cattacccta
60caccagaatt aaactagtat ttttacttga cttagaaagg gggaaattaa aaaaaaaaaa
120aaaaaactaa aaaaagttct ccaactgatt ctggtagaga cgattagcag aaatatcttg
180caaagaacgt aggtgtcctg gaagactcat cgccgtcatc attataattt ctaatcatgc
240tgtgtgggca ggtgtccgtg tagcagaaac accactggca cccagattag cagtttcatc
300gggagactag aaactaagtc tgcaattctt agacctcaaa gtctgaatca cagctttccc
360ctcagggatc agcaaatatg cagtctgtgc cttagcaagg gctgttgggc ctgccacgag
420aggtaatcaa acaccagggc catccaaaaa cacacacagt ggagcaaggt acaggaagct
480tcctgtgagc ctggaaatac cactagattc agaaacagaa ggccagagtt gtattcccac
540atgatggctc taattcactg agtaactttg aatgaatcat ttgccttctt tgcatttttg
600ttttcgttct catctgaaaa ttgagagttt ttcaactatt ggttttcaaa tgagacatgg
660gataagatca ggagggaagg cagccagcag cagtcttggg ctttccctgg cgcaaaaccn
720tccccgcaac tggag
735491412DNACanis familiarismisc_feature(1)..(1412)n is a, g, c, or t
49cttcccacct nnnacccntg gnccttaaca gncacnnncc tttggagata gctaactcct
60acncattcaa catcagtgnn anggntctcc tccagaaggc ttcctcnacc ctttcaattc
120ccacttacnt gtaagcctag gatgcctcct ctcagattca gactggttgn cncagtgttt
180aagaacttna gctgtacagc canagagttt gtattggaaa ataatctctg tggttttttg
240tcngcatgat cttggacgag ttatttaacc ccctcagtnt agtttcttca tccatataat
300ctggcaaatg atagtncnca gtccatacaa ttgtnagcac taaacaaaat aatgtacacg
360agcctggcac actgaaggan cccagtgaaa ggtggttgtg attactnaca gtccttctca
420ttctctagca tagcacttac cgtgttgcgt tccgattttc tgtctgcatg tctacctgca
480tgtcggtttg catgcagact atgaactgga agctgaatcc ccagtgcctg gtacaatgtg
540agaccccata ncagttcatt gaatgaattc agacacttca gtttttccat aaatttcagc
600cttcttcaat attttgctcc tattttctag aagtttctga aagagcagct tggaatatgt
660cagcaatttc taatttctta gcttttcagt gtgtgtgcgc gtgtgtgcgt gtgtgtttga
720tattttctgc tgtggaaacc gctggactta gatgatcagn ctgtgagata caggcaggac
780anagataaga agtaggagga gggctncgat gatgaagctt aggcactgaa gcaactcagc
840cacccaccag gaagcctcag tnccctgaar aggtggaccc tkkcasscyg wggtgaacca
900ttgtgggcca aagaggccca gtgcatgcat gaggcagacc tccctctaca gggaggcttt
960gccctactgg gatttatttc cttgctgctt aaggacctgg ctttgctcct gcctttcctt
1020gtccccttca tctgattctc tggccttatt ttggccagca gattgcattt gcctgtccag
1080tttaccatat aaatgcattc tcctcctcat gacctcttct cagcctgctg gtctaaggga
1140ggagctctgt ttcttgatcc tgccctctga ctaaattttc tcttgctgct cttccctttc
1200ctgatgattc agtacagaca cctgcccaat tccacttttt ctcttcatct ccaattattt
1260ggtggtcaag actgtttact caaatatgca tctggtttaa tcacgagcca cgactctgac
1320taaagtagcc tgattatatg gttctttaag ggatagctga ctttcacaaa cctaagaaaa
1380gttncttaaa gtggtgtnct aagggnccta ca
141250866DNACanis familiarismisc_feature(1)..(866)n is a, g, c, or t
50ttnngggacn gcttgccaaa cctacaggtg gggtctttca agatctgctg acagtgaagc
60taaatctggc ggaagcaaag gattcacttt ctcataatgg attaactcat cctatttgcc
120tcttaaacaa tgggtatttt aaagacagaa gttgaaggaa gtccaagtat ccaattttaa
180ggatgcctat tagagcagtt ataagagagt gtctctcttt ctctctcttc tttctttctc
240ttggtaggag tatgcaggag gtcatttaaa agccagatag tgatacaaat cacaatgcag
300aaaaacatcc ccgtggactc ctccctgtcc tatgtttgac attcttaaaa tctatgtccc
360aggtcttgaa atctttaaat aatctaccat gttctttggc ctgccctggg aaatctattt
420cagtaccaga gctatgctgg ttacacacct tttctgactc atgttcccaa gtgattttat
480tccagatacg atttggggac agttacgtgt actgttctga tatcttccta aaaggaaatt
540attttggaag taaagtcact gataaaatca actcaggaaa atgcactttg taaatattaa
600aatataaaca ttattaaagg ccatgctgta aaaatactaa ttgattttcc tgtgtagcag
660ttacaataga acaacgatag atctctaagg ggagagtgaa aggacctcaa tttgagaaac
720gtgaggcagg aaaagtttca aataattata ttcagagtgn tacctaagtt gttacttaaa
780gacattctct acgtaaaana aacaataagg ccaaatgaag gaatgagagt tatgttatcg
840cagaaacaan gtaancggnt tntttt
86651597DNACanis familiarismisc_feature(1)..(597)n is a, g, c, or t
51acacagcaat tcattncaat gaactgttat ggggtctcac attgtaccag gcactgggga
60ttcagcttcc agttcatagt ctgcatgcaa accgacatgc aggtagacat gcagacagaa
120aatcggaacg caacacggta agtgctatgc tagagaatga gaaggactgt cagtaatcac
180aaccaccttt cactgggttc cttcagtgtg ccaggctcgt gtacattatt ttgtttagtg
240ctcacaattg tatggactgt gtactatcat ttgccagatt atatggatga agaaactaga
300ctgagggggt taaataactc gtccaagatc atgcagacaa aaaaccacag agattatttt
360ccaatacaaa ctctctggct gtacagctca agttcttaaa cactgggcca accagtctga
420atctgagagg aggcattcta aggcttacag gtaagtggga attgaaaggg ttgagggaag
480ccttctggag gagatgccat tacactgaat gttgaatgag taggagttag ctatctccag
540aggggtagtg gctgtgaagg ggcgaggggt agagggtggg aaggggatga tggaagg
59752875DNACanis familiarismisc_feature(1)..(875)n is a, g, c, or t
52cgcttgccaa cctacaggtg gggtctttca agatctgctg acagtgaagc taaatctggc
60ggaagcaaag gattcacttt ctcataatgg attaactcat cctatttgcc tcttaaacaa
120tgggtatttt aaagacagaa gttgaaggaa gtccaagtat ccaattttaa ggatgcctat
180tagagcagtt ataagagagt gtctctcttt ctctctcttc tttctttctc ttggtaggag
240tatgcaggag gtcatttaaa agccagatag tgatacaaat cacaatgcag aaaaacatcc
300ccgtggactc ctccctgtcc tatgtttgac attcttaaaa tctatgtccc aggtcttgaa
360atctttaaat aatctaccat gttctttggc ctgccctggg aaatctattt cagtaccaga
420gctatgctgg ttacacacct tttctgactc atgttcccaa gtgattttat tccagatacg
480atttggggac agttacgtgt actgttctga tatcttccta aaaggaaatt attttggaag
540taaagtcact gataaaatca actcaggaaa atgcactttg taaatattaa aatataaaca
600ttattaaagg ccatgctgta aaaatactaa ttgattttcc tgtgtagcag ttacaataga
660acaacgatag atctctaagg ggagagtgaa aggacctcaa tttgagaaac gtgaggcagg
720aaaagtttca aataattata ttcaagagtg ttacctaagt tgttacttaa agacattttc
780tacgtaaaat aaacacataa ggccaaanga agggaatgag anttangtta tngcaggana
840aaaggtaaat cggntttttt ttgtatccat tgcaa
87553612DNACanis familiarismisc_feature(1)..(612)n is a, g, c, or t
53agcggataac aatttcacac agnaattcat tcaatgaact gttatggggt ctcacattgt
60accaggcact ggggattcag cttccagttc atagtctgca tgcaaaccga catgcaggta
120gacatgcaga cagaaaatcg gaacgcaaca cggtaagtgc tatgctagag aatgagaagg
180actgtcagta atcacaacca cctttcactg ggttccttca gtgtgccagg ctcgtgtaca
240ttattttgtt tagtgctcac aattgtatgg actgtgtact atcatttgcc agattatatg
300gatgaagaaa ctagactgag ggggttaaat aactcgtcca agatcatgca gacaaaaaac
360cacagagatt attttccaat acaaactctc tggctgtaca gctcaagttc ttaaacactg
420ggccaaccag tctgaatctg agaggaggca ttctaaggct tacaggtaag tgggaattga
480aagggttgag ggaagccttc tggaggagat gccattacac tgaatgttga atgagtagga
540gttagctatc tccagagggg tagtggctgt gaaggggcga ggggtagagg gtggnaaggg
600atgatngaaa gg
61254732DNACanis familiarismisc_feature(1)..(732)n is a, g, c, or t
54agcttgccaa acctacaggt ggggtctttc aagatctgct gacagtgaag ctaaatctgg
60cggaagcaaa ggattcactt tctcataatg gattaactca tcctatttgc ctcttaaaca
120atgggtattt taaagacaga agttgaagga agtccaagta tccaatttta aggatgccta
180ttagagcagt tataagagag tgtctctctt tctctctctt ctttctttct cttggtagga
240gtatgcagga ggtcatttaa aagccagata gtgatacaaa tcacaatgca gaaaaacatc
300cccgtggact cctccctgtc ctatgtttga cattcttaaa atctatgtcc caggtcttga
360aatctttaaa taatctacca tgttctttgg cctgccctgg gaaatctatt tcagtaccag
420agctatgctg gttacacacc ttttctgact catgttcnca agtgatttta ttccagatac
480gatttgggga cagttacgtg tactgttctg atatcttcct aaaaggaaat tattttggaa
540gtaaagtcac tgataaaatc aactcaggaa aatgcacttt gtaaatatta aaatataaac
600attattaaag gccatgctgt aaaaaactaa ttgattttcc tgtgtagcag ttacaataga
660acacgatgat ctctaagggg agagtgaaag gaccttattt ggtaaccgtg aggcagnaaa
720gtttcaaata tt
73255697DNACanis familiarismisc_feature(1)..(697)n is a, g, c, or t
55ctagcttgcc aaacctacag gtggggtctt tcaagatctg ctgacagtga agctaaatct
60ggcggaagca aaggattcac tttctcataa tggattaact catcctattt gcctcttaaa
120caatgggtat tttaaagaca gaagttgaag gaagtccaag tatccaattt taaggatgcc
180tattagagca gttataagag agtgtctctc tttctctctc ttctttcttt ctcttggtag
240gagtatgcag gaggtcattt aaaagccaga tagtgataca aatcacaatg cagaaaaaca
300tccccgtgga ctcctccctg tcctatgttt gacattctta aaatctatgt cccaggtctt
360gaaatcttta aataatctac catgttcttt ggcctgccct gggaaatcta tttcagtacc
420agagctatgc tggttacaca ccttttctga ctcatgttcc caagtgattt tattccagat
480acgatttggg gacagttacg tgtactgttc tgatatcttc ctaaaaggaa attattttgg
540aagtaaagtc actgataaaa tcaactcagg aaaatgcact ttgtaaatat taaaatataa
600acattattaa aggccatgct gtaaaatact aattgatttt cctgtgtagc agttacaata
660gaacacgata gatctctang gggagagtga aaggact
69756617DNACanis familiarismisc_feature(1)..(617)n is a, g, c, or t
56tggattgcga gcggataaca atttcacaca gaattcattc aatgaactgt tatggggtct
60cacattgtac caggcactgg ggattcagct tccagttcat agtctgcatg caaaccgaca
120tgcaggtaga catgcagaca gaaaatcgga acgcaacacg gtaagtgcta tgctagagaa
180tgagaaggac tgtcagtaat cacaaccacc tttcactggg ttccttcagt gtgccaggct
240cgtgtacatt attttgttta gtgctcacaa ttgtatggac tgtgtactat catttgccag
300attatatgga tgaagaaact agactgaggg ggttaaataa ctcgtccaag atcatgcaga
360caaaaaacca cagagattat tttccaatac aaactctctg gctgtacagc tcaagttctt
420aaacactggg ccaaccagtc tgaatctgag aggaggcatt ctaaggctta caggtaagtg
480ggaattgaaa gggttgaggg aagccttctg gaggagatgc cattacactg aatgttgaat
540gagtaggagt tagctatctc cagaggggta gtggctgtga aggggcgagg ggtagagggt
600ggnaagggga tgaattg
61757803DNACanis familiarismisc_feature(1)..(803)n is a, g, c, or t
57cctgcagcta gcttgccaaa cctacaggtg gggtctttca agatctgctg acagtgaagc
60taaatctggc ggaagcaaag gattcacttt ctcataatgg attaactcat cctatttgcc
120tcttaaacaa tgggtatttt aaagacagaa gttgaaggaa gtccaagtat ccaattttaa
180ggatgcctat tagagcagtt ataagagagt gtctctcttt ctctctcttc tttctttctc
240ttggtaggag tatgcaggag gtcatttaaa agccagatag tgatacaaat cacaatgcag
300aaaaacatcc ccgtggactc ctccctgtcc tatgtttgac attcttaaaa tctatgtccc
360aggtcttgaa atctttaaat aatctaccat gttctttggc ctgccctggg aaatctattt
420cagtaccaga gctatgctgg ttacacacct tttctgactc atgttcccaa gtgattttat
480tccagatacg atttggggac agttacgtgt actgttctga tatcttccta aaaggaaatt
540attttggaag taaagtcact gataaaatca actcaggaaa atgcactttg taaatattaa
600aatataaaca ttattaaagg ccatgctgta aaaatactaa ttgattttcc tgtgtagcag
660ttacaataga acaacgatag atctctaagg ggagagtgaa aggacctcaa tttgagaaac
720gtgaggcagg aaaagtttca aatattatat tcaagagtgt acctaagttg ttacttaaag
780acaattctnc acttaaataa acc
80358786DNACanis familiarismisc_feature(1)..(786)n is a, g, c, or t
58gngnggnaat gtgcagncgg ntaacaattt cacacagnaa ttccatttcc ctcaacaagc
60aggagaaatt ttctcaagag tttaccagaa gtcactctta acgtcaggct tgcaaatttt
120aaaaagcatg aaaaagaacg tctactacat aatcctccag gcacattcca acacgctgcc
180aacagtattc ctgaaaatcc tctgtcaaac ccctccataa atcatagcct cagagctctg
240tgtgtgtggc tgcagcaggc tcgtagctgc agagcacttg catggaggag acatgcgctc
300aggaactgca ccgccgcatt ccgcagaagc cacgcgactt acttccctct gctgcatgtt
360aacctgtgct atgttctaga tcttacttta gttagtaatt caacaacagg agtcatgtgg
420gctggcaagt agtcagctga aaactaacat gtgaacagaa ctctcagggg caggcctcca
480gcaagctccc acccgagtca gtactgctcc cgccttccct tcagcttgtg ggtgggtact
540gctccctggg taaccccgtt acttcaaccc cacagaacct gctaatcctt cccatagatt
600accttctgaa gcctcacaaa acccccatct gaaagaagag gaaactgaga cacggtgaga
660catggtgccc ctcgcccaaa gtctgacagt ttgatatggt agagccagga atccatccca
720gggnagtggg ccagaaggta gtggctgact gccatgcccg aggacgtccc caggagctgc
780cgtgaa
78659837DNACanis familiarismisc_feature(1)..(837)n is a, g, c, or t
59tctggnnccc cgggacgtnn ttgggagctg ccctgagctc ccacctgctg ctgccagtac
60tagcacaggg tcctcaagtg atggctgctg gtgaattatt tagaatctcc atgggcaggg
120cattctgctt tttagcactg tgtcttgacc tgttccaaga ccatcttcca aggagagcca
180gcagctggtg ttgtaagttc ttcccatgac aaataagccc aagacctcac ttaggaaaca
240tacaatgatt atatgatctt gggagtcagc cctagaaggg cccttcttct cttgcttcaa
300gctaaaaaga ctctggacaa caaaagaggc agtggctgct aagtaacttg caactaccac
360ttcagtctca ctgcagctgc aaagatagga acagagaagt tttaggtgag aaactccttt
420ttcccaagaa actgtgatga accagtgtta cagtttaggg agagagctct gtagacaagg
480agggacctaa ggacccccag gactcaccac ccccacacct agctcccctg gtcacctggt
540acgtaagcag gtaggctctg cttagcatag tgctaagatc acatcttgct cagagtgtac
600aaactcagga aagctggcat taggtagtat cacaagtgaa aaaatacctc aaccagtggc
660cattggaagt gcggaagtac atgccatact cactgcaagg ttctccattc cagctgccgt
720actgtgtaat acgacttaat atcttcagag natcaaggtt aatttcaaat ttgtgtcttc
780aaagaacatt tctttttnnt tcttttgggg ncagtactgc gcacatttta actagga
83760866DNACanis familiarismisc_feature(1)..(866)n is a, g, c, or t
60ttgtcgagcg gataacaatt tcacacagna attccagcac catgcactct ctgagacagg
60tgaggatttt gcagcagctg ataaggacac aagtgaacag gagcataata atgaaaacac
120aaagactagt tagctgttac tacttgcttc tagggcttct agtgttctct gttgtgatac
180ttggtcaaat gttgtttggg agtcactgaa gaatgcttca tcatttgcaa agataggacc
240ctaacttgta agccccttaa attaaaagaa tgctttttag tacaaaatta atgatcttag
300tcacaaaaag caaagaagaa atcaaaatca caaagtcatc attcaaagtt gtattcttta
360tagcaaaaat ggggcaagct acaggattgc caaaagtctt ataaaacagg aggaaggttt
420atgaaatgat gctcagagag aatgcagaat gtgctattag cacaaatcct ttctgaaatg
480gaacctgagc aaagtgatgg catttgatgt agaggaatag ccaccatcac atatgtgtga
540gagaaaatag tttgctttgg ggatgaacaa taccaccgtt gtacaaagca tgaataagca
600cttggaaaat gtatagtatg tataacagag ggacttttat ctgtttggca ttgaaaatca
660atgccattaa aagtaggaac aattggttat tgggnctgat tttttaaaag aattcattta
720tttnttttng gggganagaa nncccccccc cctntnaccc cnggggaaan annnaggggn
780aaaaaanaat ntnnagccna ctnttttctt nntgggnccc cgggnggggg ctttancnca
840aancccngna aannannntn ngnccn
86661886DNACanis familiarismisc_feature(1)..(886)n is a, g, c, or t
61ttgngaaccc gcttgccaaa cctacaggtg gggcctttca agaacataag cccaaataag
60cactggcaca tagtaggagc agcataaacg ctccccctcc tattcctaac ccaccaagaa
120ttctagattg acagtttttt ctttgagtat tttaaagatg ctgcttccct gacttcttgt
180ttgcaaattt ctgatgagaa atctgctgtc attttatctt ccttcctttg cataatgatg
240tatctttttc tctctgcttt taagattttc attttatcac tggttctaag caatttaatt
300atgatgttcc ttggtatagt gctcttcata tttctattag gagtttgttg agcttcttgg
360atttgtgagt ttatagtttt tatcaaattt ggcaagtttt cagctactat ttcttcaact
420ttttttttcc tgtcctccct tgactcctcc tcattcccat atttctcctg tccttcaggg
480actccagtta tctgtatgtt aagctcattg ataccctatt tgtgtatatt ttaaggcttt
540ttattccctg tatttcattt tggatagttt ctactgcaat gttttcaggt tctttaacct
600cttttttttt ttccccccag taatgtctaa tctgctcttc atcccaaaga catgtagtgg
660tgtgtgtgct aaaaatccca gacaatgttt ttatgattcc taggtatttg ctttggggct
720tttcaaagat tttccatatt tctacttcct tggccatata gaatgcggnt attattattt
780tttagnggcc tatgctacta aatcctataa ttnctgggac tccnttgatt nagnntnncc
840tttttattta ttnattaagn anggttttat tgggagttng attncc
88662728DNACanis familiarismisc_feature(1)..(728)n is a, g, c, or t
62ggattgtcag cggataacaa tttcacacag aattcccagg acccagcatg atgcctggtg
60tgcacatggg tgggccctcc tatgtaagcg tcaccactcg ggagcagtgg cggggatgcc
120tggatgcgcc ggctcctgcg tgtagggtgc tatcaggaca ttgctgggtt gccacctctg
180tctgaggctc cagagagcga ggggacaccc cacatcatga atgccctgtg gggttaccag
240tgggggcaat tacctgcatt gctcctgggc ctcagcggcc tcatctgtga aatgggtaca
300ttcatatcac gtatgggaga gggctgccgt ggggtttaat ggaggcaacc catttgagcg
360ctgggcccgg caccgctcct gctcttactg tgactatggc cagcgtcact gttgcagggc
420cttgaccggc cggggtggac gctggtgcca ccgttgctct ctcccagggt gggaggagac
480aggcctgcgg ggcggactca ccgtggcgtt gacggtgagc tggtaggcct gcgtggtctc
540gtagtccagc tcgcggacca ccgtgacgat gccgcgggcg ctgtcgatgg cgaacaacgg
600ggaccggggc tggaaggagt acaggacgct gccccctgca ccaagtcggg gtccgtggcg
660ttacgataaa atgggtgtcc ccaccggcgt gttctggggg ccaagcaaac aaccaaggtg
720agtgggct
72863785DNACanis familiarismisc_feature(1)..(785)n is a, g, c, or t
63attgtcgagc ggataacaat ttcacacaga attcctaaaa cccttactgt tgtttttata
60tggcacttcc tgatgtgatt gcaggctttt agcaaagcca tttttgttaa caaaaaatga
120tttaaattct tttaaacaag tgtttagtga caagtcagta tttagtcatc tagttattga
180tacagcaccc ataaaattta tcactgaggg gagggatcag gaggaaatgt gggcattcta
240acttaatgat taataatatg tgtctataac aaatgtgatg gctaagttat aaaatattta
300aaaaattttt tcttgcaggt atttataaca gcaatgatgt agcagtatca tttccaaatg
360tggtatctgg ctcaggatct agcactcctg tctccagttc tcatttacct cagcagtctt
420ctgggcattt gcaacaagtg ggagcactct ccccatcagc agcatcatct gcaacccctg
480ctgttgctac aactcaggta atcattacag tgctatgaag taacctgtag atggctttgt
540cgtttttgaa agtgagtttg attggagaag aaagaaacct tgtatagaaa ccttcctata
600taaattccta taggaattta taagtatctc catttgtttt gacacgttag tggatataat
660agacattttt atgtgatatt catgagaaag gacaaaagaa tacattggca ttaactgatt
720cttttcagtt tctgagtttc taatttttcc tgaagatgna aacaaaaatt tggggggaac
780tttta
78564981DNACercopithecus aethiopsmisc_feature(1)..(981)n is a, g, c, or t
64ttggnaancg tcagaccaag tttactcata tcggatccaa agtgcttgag actgcatttt
60tttcaaattt tgcaatattt gcattataat caccagttaa gcatccgtaa tccaaaaatc
120ctaaacctac aatgctctaa taaatatttc ctttggctgt gttggtgcaa aaaatgtttt
180ggattttgga agacttcaaa tttcacatta gggataccct gagtggaaaa aatagttttt
240gtttttaaga ttctttcact caacaacaat caacaaggta gacttctgtg atcaaatgtg
300tgaggatttc tccccaccaa taagcaatca attctgcagc agacaccaag tgggtatcct
360ccaattcaag tctgacatta cctacctgga gaaagcgtca gatctcacag gttgatggct
420cagtcccaca agactgctcc ctacttctga tgtcaatcac aagccacagt ttgttttacc
480tgtgcttcta actgactgga tataaactgg gaatctcatg agcccctctt tgggttcggt
540taatttgcta gagtggctca cagaactcag ggaatcacat ttattagttt attataaagg
600atatacagtt gaagagatac acatggcaag gtatgccctc cctgggaaca ccactctcca
660ggaacctnct tttgttcctg tccagaagct cttcgaatcc tctcctcttg ggccttttat
720ggagacttna ttagatgggc atgactgaca cacatgtaga aatgtgactg gagaaaaaat
780atatgatcta atattaatag actggggaaa ctcancaggg cctgtntgtt caaattnttc
840nggncntttt gggtagcatt ncttnctcca gggttngggg gngnacnttt ttgaaagaaa
900gtntttgacc ctanncaaaa gngggggaag annaantnct ctttnggcag nnaaaaaaaa
960aaaaattttt tttttnggnt n
98165981DNACercopithecus aethiopsmisc_feature(1)..(981)n is a, g, c, or t
65ttggnaancg tcagaccaag tttactcata tcggatccaa agtgcttgag actgcatttt
60tttcaaattt tgcaatattt gcattataat caccagttaa gcatccgtaa tccaaaaatc
120ctaaacctac aatgctctaa taaatatttc ctttggctgt gttggtgcaa aaaatgtttt
180ggattttgga agacttcaaa tttcacatta gggataccct gagtggaaaa aatagttttt
240gtttttaaga ttctttcact caacaacaat caacaaggta gacttctgtg atcaaatgtg
300tgaggatttc tccccaccaa taagcaatca attctgcagc agacaccaag tgggtatcct
360ccaattcaag tctgacatta cctacctgga gaaagcgtca gatctcacag gttgatggct
420cagtcccaca agactgctcc ctacttctga tgtcaatcac aagccacagt ttgttttacc
480tgtgcttcta actgactgga tataaactgg gaatctcatg agcccctctt tgggttcggt
540taatttgcta gagtggctca cagaactcag ggaatcacat ttattagttt attataaagg
600atatacagtt gaagagatac acatggcaag gtatgccctc cctgggaaca ccactctcca
660ggaacctnct tttgttcctg tccagaagct cttcgaatcc tctcctcttg ggccttttat
720ggagacttna ttagatgggc atgactgaca cacatgtaga aatgtgactg gagaaaaaat
780atatgatcta atattaatag actggggaaa ctcancaggg cctgtntgtt caaattnttc
840nggncntttt gggtagcatt ncttnctcca gggttngggg gngnacnttt ttgaaagaaa
900gtntttgacc ctanncaaaa gngggggaag annaantnct ctttnggcag nnaaaaaaaa
960aaaaattttt tttttnggnt n
981661005DNACercopithecus aethiopsmisc_feature(1)..(1005)n is a, g, c, or
t 66ctnagctngc ttgccaaacc tacaggtggg gtctttcaaa aaacagacat gcagacttta
60acagataata aggtttttga ggttttccgt ttatgtattt actcgagaaa gcaagagctt
120tatttattta tttttgagac ggagtttcgc tctgtcgccc gggctggagt gcaatggctc
180catctcgtct cactgaaacc tctgcctccc gggttcaagc gattctccca tctcaacctc
240ccgagtagct gggattacag gcgcgcgacg ccacgcctgt ataaaaatac taaaaatgca
300aaaataattt ttgtattttt agtagagatg gcgtttcatc atgttggcga aactccaggc
360tggtctcgaa ccctgacctc ggtgatctgc ccgcctcggc ctcccaaagt gctgggatta
420caggcgtgag ccaccgcgac cggccaagag ctttataaag atggaaaacg aagcagactt
480tctgcccaag ccatgctttt ggataaggat tacactactt tgaaatctta catatatagc
540acttggccaa ctatcaaaac tgcacaaacc ttcactaatt gcaattattc cctttaacat
600ctcgagttac cccaatccgc acaaaacaag tttagtgccc accaggtaat aatacattca
660ggaaaataat tccaagaaca gacgtttaag aactacagag aaaaacatac ttttttctac
720aagaaaaaat cttagaggac agtaccaggg nccttatctc tgttagcatg atttatattt
780cacgtaacgt tggcccagtc actgctncat tntaaancna tagccanggc anatagaaag
840tctgaacana ttgacngcna ngggtttaaa ttttttacca ggnaacaaan cctggcaaac
900tgccancang ggtgcccaaa tgctggnctn gggtccctgg aagnaaacgg agggctttga
960atttttttcc ntttnggaac ngncnnggnt ttnggcnaan tnttc
100567863DNACercopithecus aethiopsmisc_feature(1)..(863)n is a, g, c, or
t 67nttttgggng nntancttnt ananatnngc caattattgg ggggnacctt catcataagt
60attaatataa taataataat aagtaatagt aactagtaac aacaataaaa aggaaatcag
120cggaaagtca ggaaaaatgt taaaaaaaaa ttggaataac ttactgtagc tgaagatcaa
180aaaaatctca ctgtaaaaaa acaaaaataa aaatagccca gattagaaaa acgggaggtg
240caaaaatgtc aagtcagtaa agttcatttc ttttctcttt ccaaaagcag tttccacaaa
300aaccgcaagg ataaagtttt cagtagcaga caagcaaagc cctttcgaca tcatcaatca
360atcttaaaaa tacacgagga agtagagagg tcagtttatg agaggctaaa aggctcctcc
420tcctctaacc caactgctgc agaaaaaata gaaatagaaa ttttaaaaat tacatcttaa
480atccaggtcc cggttttgga aacaattaaa aaaaaaacac ctgtacattt gccgtagtgc
540acaccaagtt gcatcattat gtttaaaatg tctttataaa atcagttttg gaatggaatg
600tgtgtgttct ggaagggtgg ggaagggagg ttaaaaatca aagctgagct ccagtgagta
660gggatggggt tcgccttgct gccctgtgaa agggaaagga cagatnagtc aanttnctaa
720aaatgtntgc cctaancccn anaaaaaact ttgnntttng aantaaaaat ttggtaagct
780ttaaattccc tgggngggaa nccncntaaa nacctttnca ngnnngntta aaattttaan
840aaaangggnn naaaaaaaaa ncc
86368918DNACercopithecus aethiopsmisc_feature(1)..(918)n is a, g, c, or t
68cnnnttctgg nngatnaaan tnnttnnnna nttcnccaat nnattggggg gaannnttca
60tcataagtat tnatataata ataataataa gtaatagtaa ctagtaacaa caataaaaag
120gaaatcagcg gaaagtcagg aaaaatgtta aaaaaaaatt ggaataactt actgtagctg
180aagatcaaaa aaatctcact gtaaaaaaac aaaaataaaa atagcccaga ttagaaaaac
240gggaggtgca aaaatgtcaa gtcagtaaag ttcatttctt ttctctttcc aaaagcagtt
300tccacaaaaa ccgcaaggat aaagttttca gtagcagaca agcaaagccc tttcgacatc
360atcaatcaat cttaaaaata cacgaggaag tagagaggtc agtttatgag aggctaaaag
420gctcctcctc ctctaaccca actgctgcag aaaaaataga aatagaaatt ttaaaaatta
480catcttaaat ccaggtcccg gttttggaaa caattaaaaa aaaaacacct gtacatttgc
540cgtagtgcac accaagttgc atcattatgt ttaaaatgtc tttataaaat cagttttgga
600atggaatgtg tgtgttctgg aagggtgggg aagggaggtt aaaaatcaaa gctgagctcc
660agtgagtagg gatggggttc gccttgctgc cctgtgaaag gagaagggac agattgagtc
720agagttcctc aaaaatgttg tgccctaaac ccccaagaca gaaacatctt gtttattntn
780gctaacacaa tntttntgna naatnatnaa cctccccngg ggagggnacn ccctnnnnaa
840aannnccctt nccanggant gnnttnaaan tttttnaana tnantggggg nanaaaatna
900acnaanccct gnnaattn
91869887DNACercopithecus aethiopsmisc_feature(1)..(887)n is a, g, c, or t
69tncantcttt nnnnggcnna nacgcgcgnc nantcgccaa tnactggggg ggnancttca
60tcataagtat taatataata ataataataa gtaatagtaa ctagtaacaa caataaaaag
120gaaatcagcg gaaagtcagg aaaaatgtta aaaaaaaatt ggaataactt actgtagctg
180aagatcaaaa aaatctcact gtaaaaaaac aaaaataaaa atagcccaga ttagaaaaac
240gggaggtgca aaaatgtcaa gtcagtaaag ttcatttctt ttctctttcc aaaagcagtt
300tccacaaaaa ccgcaaggat aaagttttca gtagcagaca agcaaagccc tttcgacatc
360atcaatcaat cttaaaaata cacgaggaag tagagaggtc agtttatgag aggctaaaag
420gctcctcctc ctctaaccca actgctgcag aaaaaataga aatagaaatt ttaaaaatta
480catcttaaat ccaggtcccg gttttggaaa caattaaaaa aaaaacacct gtacatttgc
540cgtagtgcac accaagttgc atcattatgt ttaaaatgtc tttataaaat cagttttgga
600atggaatgtg tgtgttctgg aagggtgggg aagggaggtt aaaaatcaaa gctgagctcc
660agtgagtagg gatggggttc gccttgctgc cctgtgaaag gagaagggac agattgagtc
720agagttcctc agaaatgttg tgccctaacc cccaagacag aaacatctgt ctttgcagct
780aacacatttt ggnaagcatn acatncactg ggatggacag ccncntaaaa aaccttnncn
840ngncnnnttt naanttttaa nnnaaagggg nnnaaataan naacccn
88770897DNACercopithecus aethiopsmisc_feature(1)..(897)n is a, g, c, or t
70ctttggggng tnnttcanac nttttancac nntnntcgcc antccncttg aggggnaaac
60ccatcgcctt ctatcgnctt cttgacgagt tcttctgagc gggactctgg ggttcgaaat
120gagctagccc ttaagtaacg ccattttgca aggcatggaa aaatacataa ctgagaatag
180aaaagttcag atcgaggtca ggaacagatg gaacagggtc gaccggtcga ccggtcgacc
240ctagagaacc atcagatgtt tccagggtgc cccaaggacc tgaaatgacc ctgtgcctta
300tttgaactaa ccaatcagtt cgcttctcgc ttctgttcgc gcgcttctgc tccccgagct
360caataaaaga gcccacaacc cctcactcgg ggcgccagtc ctccgattga ctgagtcgcc
420cgggtacccg tgtatccaat aaaccctctt gcagttgcat ccgacttgtg gtctcgctgt
480tccttgggag ggtctcctct gagtgattga ctacccgtca gcgggggtct ttcaatgatg
540gtgatgatga tgatgataat gacactgatg atttttaacc ggattaaaat cgagtttttc
600tgaatgtttc taagaatttc tccggcctcc tgattgactt tggagttttg catcttggga
660gagaaagcga aggcattagt atttttaagt ggattgatca cataaacctt ttctctccca
720accccaccct tgcccttatc cccttcccca cactgaacag aattttactg gctgntaagt
780ctatgacctt attttttcct gatctttaac ttaactgntt tagagcatct ntggacgncn
840ggattttnaa attttttnat tttnggnttt ttnntttnaa annttnnatt gggaaan
89771878DNACercopithecus aethiopsmisc_feature(1)..(878)n is a, g, c, or t
71tcggggngnn ctccactnnt gntgcnnntc nncgccantc cncttgnggg gnaaaccatc
60gccttctatc gncttcttga cgagttcttc tgagcgggac tctggggttc gaaatgagct
120agcccttaag taacgccatt ttgcaaggca tggaaaaata cataactgag aatagaaaag
180ttcagatcga ggtcaggaac agatggaaca gggtcgaccg gtcgaccggt cgaccctaga
240gaaccatcag atgtttccag ggtgccccaa ggacctgaaa tgaccctgtg ccttatttga
300actaaccaat cagttcgctt ctcgcttctg ttcgcgcgct tctgctcccc gagctcaata
360aaagagccca caacccctca ctcggggcgc cagtcctccg attgactgag tcgcccgggt
420acccgtgtat ccaataaacc ctcttgcagt tgcatccgac ttgtggtctc gctgttcctt
480gggagggtct cctctgagtg attgactacc cgtcagcggg ggtctttcaa tgatggtgat
540gatgatgatg ataatgacac tgatgatttt taaccggatt aaaatcgagt ttttctgaat
600gtttctaaga atttctccgg cctcctgatt gactttggag ttttgcatct tgggagagaa
660agcgaaggca ttagtatttt taagtggatt gatcacataa accttttctt tnccaacccc
720acccttgccc ttatcccctt ccccacactg aacagaattt tactggctgn taagtctatg
780accttatttt tcctgatctt taactnactg ntttagannt ctctggacgn cggnntttna
840aatttnttat tttgggtttt tantttaaan cttnattn
87872964DNACercopithecus aethiopsmisc_feature(1)..(964)n is a, g, c, or t
72cttctgggnn gannnaanca nttcgnncan nnctccncca atctacttgn ggggcaaacc
60catcgccttc tatcgttctt cttgacgagt tcttctgagc gggactctgg ggttcgaaat
120gagctagccc ttaagtaacg ccattttgca aggcatggaa aaatacataa ctgagaatag
180aaaagttcag atcgaggtca ggaacagatg gaacagggtc gaccggtcga ccggtcgacc
240ctagagaacc atcagatgtt tccagggtgc cccaaggacc tgaaatgacc ctgtgcctta
300tttgaactaa ccaatcagtt cgcttctcgc ttctgttcgc gcgcttctgc tccccgagct
360caataaaaga gcccacaacc cctcactcgg ggcgccagtc ctccgattga ctgagtcgcc
420cgggtacccg tgtatccaat aaaccctctt gcagttgcat ccgacttgtg gtctcgctgt
480tccttgggag ggtctcctct gagtgattga ctacccgtca gcgggggtct ttcaatgatg
540gtgatgatga tgatgataat gacactgatg atttttaacc ggattaaaat cgagtttttc
600tgaatgtttc taagaatttc tccggcctcc tgattgactt tggagttttg catcttggga
660gagaaagcga aggcattagt atttttaagt ggattgatca cataaacctt ttttttncca
720accccaccct tgnccttatn cccttnccca cactgaacag aaanttactg gctggnannn
780natganccta nttttncngn ncttnaanta acnggnnnna anaaancnng gcnnccggnn
840nnnaaaaaan ttnnnnnnng nngntttttt naaaaancnt nnttnnaaaa ntaaaancgg
900nnnnnaaaaa nggggggggn cnncnnancn tnannnnggg ngggttttcc nnnaancntt
960ttcc
96473986DNACercopithecus aethiopsmisc_feature(1)..(986)n is a, g, c, or t
73catcnttctg nnnngnaana aacgtncnnn nnncnnctcc cnaatttaac ttgggggggn
60aaaancatcg ccttctattt ttcttcttga cgagttcttc tgagcgggac tctggggttc
120gaaatgagct agcccttaag taacgccatt ttgcaaggca tggaaaaata cataactgag
180aatagaaaag ttcagatcga ggtcaggaac agatggaaca gggtcgaccg gtcgaccggt
240cgaccctaga gaaccatcag atgtttccag ggtgccccaa ggacctgaaa tgaccctgtg
300ccttatttga actaaccaat cagttcgctt ctcgcttctg ttcgcgcgct tctgctcccc
360gagctcaata aaagagccca caacccctca ctcggggcgc cagtcctccg attgactgag
420tcgcccgggt acccgtgtat ccaataaacc ctcttgcagt tgcatccgac ttgtggtctc
480gctgttcctt gggagggtct cctctgagtg attgactacc cgtcagcggg ggtctttcaa
540tgatggtgat gatgatgatg ataatgacac tgatgatttt taaccggatt aaaatcgagt
600ttttctgaat gtttctaaga atttctccgg cctcctgatt gactttggag ttttgcatct
660tgggagagaa agcgaaggca ttagtatttt taagtggatt gatcacataa accttttctc
720tcccaacccc acccttgccc ttatcccctt ccccacactg aacagaattt tactggctgt
780taagtctatg accttatttt tcctgatctt taacttaact gntttanagc atctntggac
840gnnngnattt naaanntttt tatttnggnt tttnatttta aannttnatt ngnaaanntt
900naactgggct gnanaaaagg gnggggncta ctnaaantnn nnacgggagg gntttncctg
960nanncanttn ctccnnttcc ntgaan
98674748DNACercopithecus aethiopsmisc_feature(1)..(748)n is a, g, c, or t
74ttttttgcnt taccgtatcg ccgctnncga ttcgcagcgc atcgccttct atcgccttct
60tgacgagttc ttctgagcgg gactctgggg ttcgaaatga gctagccctt aagtaacgcc
120attttgcaag gcatggaaaa atacataact gagaatagaa aagttcagat cgaggtcagg
180aacagatgga acagggtcga ccggtcgacc ggtcgaccct agagaaccat cagatgtttc
240cagggtgccc caaggacctg aaatgaccct gtgccttatt tgaactaacc aatcagttcg
300cttctcgctt ctgttcgcgc gcttctgctc cccgagctca ataaaagagc ccacaacccc
360tcactcgggg cgccagtcct ccgattgact gagtcgcccg ggtacccgtg tatccaataa
420accctcttgc agttgcatcc gacttgtggt ctcgctgttc cttgggaggg tctcctctga
480gtgattgact acccgtcagc gggggtcttt caatgatggt gatgatgatg atgataatga
540cactgatgat ttttaaccgg attaaaatcg agtttttctg aatgtttcta agaatttctc
600cggcctcctg attgactttg gagttttgca tcttgggaga gaaagcgaag gcattagtat
660ttttaagtgg attgatcaca taaaccnttt tntcttccaa ccccaccctt gcccttatnc
720ccttncccac actgaacaga attttact
74875881DNACercopithecus aethiopsmisc_feature(1)..(881)n is a, g, c, or t
75tnctttgcgg acccgtatcg ccgcttccga ttcgcagcgc atcgccttct atcgccttct
60tgacgagttc ttctgagcgg gactctgggg ttcgaaatga gctagccctt aagtaacgcc
120attttgcaag gcatggaaaa atacataact gagaatagaa aagttcagat cgaggtcagg
180aacagatgga acagggtcga ccggtcgacc ggtcgaccct agagaaccat cagatgtttc
240cagggtgccc caaggacctg aaatgaccct gtgccttatt tgaactaacc aatcagttcg
300cttctcgctt ctgttcgcgc gcttctgctc cccgagctca ataaaagagc ccacaacccc
360tcactcgggg cgccagtcct ccgattgact gagtcgcccg ggtacccgtg tatccaataa
420accctcttgc agttgcatcc gacttgtggt ctcgctgttc cttgggaggg tctcctctga
480gtgattgact acccgtcagc gggggtcttt caatgatggt gatgatgatg atgataatga
540cactgatgat ttttaaccgg attaaaatcg agtttttctg aatgtttcta agaatttctc
600cggcctcctg attgactttg gagttttgca tcttgggaga gaaagcgaan gccttantat
660tttttagngg gtnggnnaca tataaccttt ttttttccaa nccccccctt ncccttttnc
720cctttccccc actgaaaaaa attttacngg ctgnnaannn tnnnaccntn ttttnccnnn
780ncttnannna annggttnaa gaccnnnnng ggccnnnggn tttnaaantt ttttntttng
840ggnttttnnt tnnaancnnn cnttggnaaa ntttnaanng g
88176906DNACercopithecus aethiopsmisc_feature(1)..(906)n is a, g, c, or t
76cannnttctg gggngtnnnn aactnannnn nnnnatcgcn nccacantnn nnttgggggg
60aaaaacctga atacatttgt ngttatttcc cttagatctt tttttttttt tttttttttt
120ttgagacatc tcactctgtc acccaggcta gagtgaagtg gcacaatctc tggctcactg
180caacccccac ctgcctggtt caagcgattc tcctgcctca gcttcccgag tagctggtac
240tataggtgtg caccaccaca cctggctaat ttttttaaaa aatattttta gtggagatgg
300ggtttcacca tgttgaccag gctggtctca aactcctgac ctcaaaggat ccacctgcct
360tggcctccca aagtgctggg attataagca tgagccacca tgccagcctg tttcttttag
420atcttgattt gatattctgg atatgaatga aagaaaatta atgagtgttt caaagtctaa
480ataaggaagc tccacagata atattaacat ttctctgatc tagtcatatt tattattgtg
540tttcaattag aagtggctgt aggctctgaa agacacacta taaataaagc ctccccctca
600tacaccctca ctcacaccca cacttacacc aatgcaattt ttagacagaa acacaagcaa
660gaaataggat agattttttt taaaaaatgg gcattggtta aattttctgg tcatattaaa
720aaanntnttt nagaactccc aanggggggc cattaataga gacctnattc nctgnnggaa
780nnaaannggn aaattncnan aattnctnac aatntttagg ganttgangn aaaatnttnn
840gtnnntgnna ctttcctagn ggncnnnttn ngccctatnc ccaggnnttt tatnctaaac
900cccntc
90677909DNACercopithecus aethiopsmisc_feature(1)..(909)n is a, g, c, or t
77cntcttnngg gngttnaanc tgncntnnaa tgcntcacat tnattnnggg gaaaaccgta
60ctgacttatt atgagaggtt tctgctcttg ttaggatcca gtaggtttga ggtgcaacta
120ttcctctact ttactcttcc acctcccaga gaactctgcc aagaaccatg ttaagactgc
180tttctgcttt aactactaat agtcttgatt ataggaacgg aatttgtgta tcaagtaggt
240tctaagaact taacataaaa actggctatt aatgcatttg caaaatttgc attttaaatc
300caaggcaaga acaggtcagg caaaaatgga atccaaacac caaattgtta aaagttttaa
360gtccatttct cttgttagtt tgcaacttaa attactaatt ctctaatgtt ttagagcaga
420agttggtaaa ttgtttctgt aaaaaaattg tttctttaaa ttgtttcata atcaaaattt
480taggttgtgt aggtgatact gtttctgttg aaattattta atctaaataa atggacatag
540ctgtgttcta acaaaacttt atgattaacc tgacaggcca gatttgaaat gttagcaggt
600ttgcacaccc ctactttaga aaaactcagt ctttatagct tccagttaca agatgtatct
660tttttttttt tttttttaaa taagacagta ttattncaaa tgtcgggtgg ctcataccna
720aatttgtttc cccnttcttn anttttcnaa angtggggcc caaanacttn aaaaggtngn
780anncntttnn nntaanaaaa nanccattta ggggnttntn caacccctnn aaaaantttt
840tttcttnaaa aanaantnca naaaannntn ctnaaaaaan naaaggggcc cacccnttnt
900ttttaaaac
90978890DNACercopithecus aethiopsmisc_feature(1)..(890)n is a, g, c, or t
78gnnntncnnc tttnnnngat cagccgcncc ncagnncccc accaatccna cttggtgtaa
60accccccagc agggtcttgg gctttctttc tgcttctcca aaatgggcct ggcttcccag
120gagacagccg agagcgcctc gcccctgctg gaagggcagc ctgggagctg gagttggcaa
180acgggagggg acgggaggag gcccagggga gggggcgtct tcccttagct ttcagcgaca
240tctgctggcc gtgcgctgaa ctgccgctac cccagaggcc agctggagac caattttgag
300ttgtgagcag ggaaagagag gaggggttcc aggacaatca ggtctggagc ttccagaaac
360attccaaaaa cacagtttag gctttttaat tgttcactca gtcattctcc cggggtctag
420ggagaaatcg gactcagact cggatctttg gggacctacc gcagcatgat aacccaggtg
480tacctggggc tcatgggggc ctggggatca gggaggcccc tcacctgcat tcactgtgtg
540ccaagcactg gcctacatca ctgacatttg ctgtctcgct gcgggtgctg tgatcttgct
600gctgtgctca tttgacagat gaaaacgctc aggttgtgag agaaccccaa agccagagga
660ttcccttgat cactcccctt ccttcatgcc catagtcaat ccttcttcaa agcctatccg
720tcccacctcc aaagcacacc atggatgccc atccttggcc catcatcgtt accctctnag
780tgccagcctg cctgancccc tcanttnaag tcccgctccc tggccttttg cagaagcatc
840ccaccagaat ctncaagcca cccctcccna ntttnttntt cccaaatggc
89079965DNACercopithecus aethiopsmisc_feature(1)..(965)n is a, g, c, or t
79ntttctggnn gtnacagang gggngccnnn cccccccatn aactgggggn aaacncnccc
60agccccaagg tggccattgt cagggaggtg cttgctatgc agatgtgccg ttcaaaggca
120tgcagatatg aaagcatcgc tccctcaggt gggagacaat gggaaggtcg agagcactgt
180ggttaggagc aaggctttgg aattagcagt ccctgcattc aaatcctagc tttacttgcc
240tcatgacagc cgtctgtcct tgagcaaaat tgtttaacct ctctggacct gtctatatct
300gtaaaaaggg ccaacatggt gtacccaaaa gccttgtcgt ggtgatctca ttaagatatt
360tcatgtgaat atgtgctgag tggcctcacg taggaggtgc ttactgactt ctcccaagcc
420ccctcctctt catcgctact gcccgtctgc gtatcctcca gcctcctccc acgctttctc
480tcactgcact ttttgggggt gagggaggcc atttctgagt cacttgctcc tggacttgat
540gaattccatt cgtgtggcgg gggcagcagg gcccagtgtg aaccagcagc tccccaaccc
600tgcccactat accactcaag tgagtccaag ctgtgatgcc cctggctgcc tcccccactt
660cccttgagcg agctgggagg acaaagattg gactctgagg atcagcctga gacttaagat
720ggaggctgtg ttcccgagag cccagggtgg gcatgccagg aagcactctg gctccacgga
780atgctgcact gccccggggc tggcanacca ncacttcctt gtnttnctgg gtctnacagn
840cncancctgg cctgggctgt ttttgcntgn tgnacctgcc tnaaannggn aaancctggn
900ancctggagn cttccnaggt ttngnttttc caancnccca aaattangnc naaccngnct
960nnggc
96580891DNACercopithecus aethiopsmisc_feature(1)..(891)n is a, g, c, or t
80tttggtaact gtcagaccaa gttttactca tatcggatcc tctctatcag attgatctgc
60aggtgagggt gtccagagat gtcttgcaaa tggcaatgtc ccaggccatg gaaacaggaa
120tatgggctca aatccattta tggccaggca tggtggctca tgcctgtaat cccaacactt
180tgggaggtca aggcaggagg attgcttaag cccaggagtt caagaccgtc tgggcaacgg
240agaggagacc ctgtctctac aaataattaa aaaattatct gagcatagtg gcacatgcgt
300gtggtcccag ctactcggga ggctgaagtg ggaggatcgc ttgaggccaa gaggtcaagg
360ctgcagtgaa ctgtgatcat accacggcac ttgagcctgg gcgacagagc aagaccctgt
420ctttcttttt ttttttcaaa aaaaaaaaat ccatttataa tttaacatgg gagcctcacg
480ggaaagagtt cttgtcttgt tgagtggtcc agtgttttgg atgggctgga actttgcact
540tgatgtgttg taattcattt tctagagtct atgtcgtgaa ggtccttggg gtgatagagc
600cttggaaaaa tgttgtttcc ctgtggatta tctaaactag atccaagaac atgaaagacc
660atccctcagg gagctggcat ttgtctaaaa accancattn cctgggccat ttgattgggg
720ntcttgcttc actgcaaang ggggacttgc aaaattttac tnatgncccn nttgttnttt
780ttntccaagg ggnttttana aaatttttct tnncnntttt ncnnaanacc ccnttnnant
840tntnttttnc nnccccnttt nttntaacna nggggggntt ttnaacnncc n
89181803DNACercopithecus aethiopsmisc_feature(1)..(803)n is a, g, c, or t
81tggtaactgt cagaccaagt ttactcatat cggatccctt ctggtcccac atcactcagg
60caactctctc ttcccacctg ccccccaaac tcccttccac ctccctccac atgtatcctc
120ccacttcctt ccactcatgt aatgagaggt gctgatgagt cacaggagag gtagccctag
180ataaccaaca gactgcaaaa cggacagtcc ctggatgtct gagccagtgt ttgtgcactg
240cattgactgg ctcctcgtag ttttttcctg tagttgctaa agcctgtaag gtctgtgtga
300tgaatatttt ctaacacatc ttagaagaac ataatgcaag acagaatgaa aaactagaga
360ggcagaaacc cccaaagtaa gtagtgggaa attaccaggt atataatagg tcaagcctgc
420tctgcaggag ctcaagggat tgtagcattc ttatcccaaa ccactgaatc ctgggcaaaa
480ataagaagtc gcctaatttt agtattacca gcttcccaac cccgggcatt cttcatctta
540ctcaagctgt ccagaggccc cagggtgact ccctataagt cccatgggtg gctgagatct
600atttagaggc acaagggtat ctccttataa gtcccatggg tggctgagat ctatgagaag
660catcttgggg agagtgcctc tggccaccag catgtggccc tgaatctttc atgtgcaact
720ggccagggaa ggaaattatg gaaatagtca tcctgcacat ntgcaaatga gatgcaaatc
780ctggaagctc ttctaaaaaa aaa
80382763DNACercopithecus aethiopsmisc_feature(1)..(763)n is a, g, c, or t
82tcgtgcttta cggtatcgcc gctcccgatt cgcagcgcat cgccttctat cgccttcttg
60acgagttctt ctgagcggga ctctggggtt cgaaatgagc tagcccttaa gtaacgccat
120tttgcaaggc atggaaaaat acataactga gaatagaaaa gttcagatcg aggtcaggaa
180cagatggaac agggtcgacc ggtcgaccgg tcgaccctag agaaccatca gatgtttcca
240gggtgcccca aggacctgaa atgaccctgt gccttatttg aactaaccaa tcagttcgct
300tctcgcttct gttcgcgcgc ttctgctccc cgagctcaat aaaagagccc acaacccctc
360actcggggcg ccagtcctcc gattgactga gtcgcccggg tacccgtgta tccaataaac
420cctcttgcag ttgcatccga cttgtggtct cgctgttcct tgggagggtc tcctctgagt
480gattgactac ccgtcagcgg gggtctttca gtagcccttc ctttgtagca aagacagaca
540gatggtgatc caagagatac gcaagaagag gaccgtgtgt gtaatggttg agctctaaaa
600agagaaatca cttggatgga aatgaaggag aggaaaaggc tgatgtggat ggctgggaag
660aggttcgatg gttaccttgg caaccgagct tctttctcat cccatccctt ccctagtcct
720tgtcttaaaa gatttttttn tatgtccctt ccctcccaag ggg
76383861DNACercopithecus aethiopsmisc_feature(1)..(861)n is a, g, c, or t
83ttggggganc ctgtcagnac canttttact catatccgga tcctgaccta cattcagtgt
60tctagattga aatcacagat tttggataga gaaaaaaaaa tattctctgc aatctaataa
120aaccaacttt tttttttttt tttttttttt ttgagacaga gtcttgctcc atggcccagg
180ctagagtgca gtagcacgat ctcggcttgc tgcaacctct gcctgtcggg ttcaaccgat
240tctcctgcct cctgtctcct gccccagcct ntcaagtagc agggattaca ggcatgtgcc
300atgatgccca gctagttttt tgtattttta gtagagatgg ggtcttgcca tgttgcccag
360gctggacttg aactcctgac ctcaggtgat caggccatct tggcctccca aagtgttggg
420attacaggcg tgagccatcc tgcctggcca aaaccagcat attttatgga taggaaattg
480aggcttagat ggggggagaa aaacattaca cagattaaac cacagctaat gtcaagtggt
540gaccaaaggc gaatctttta ttgcaggctg tgggnttttt ccatgtggct ggtggnacac
600tgcaccaagc agcacacaca ctaggccagt ttnctttgca gacccagttg caatcccatc
660tntnagccag gattctatta ggtctcnaca accnatggga atttagggng ctcanagntt
720nngggtggga aaaggggact aacctncntg ggttnanggn tttnnaantg gncncnncct
780ttggancngg ganatttatt nccaaaanng gnngggntng tnttngggnn anaaaccaaa
840ttttgggaaa aaancntttt t
86184767DNACercopithecus aethiopsmisc_feature(1)..(767)n is a, g, c, or t
84ggnattgncn agcggntaac aatttcacac agnaattccg tatttgaaat ttggggacaa
60acaaacataa ctctttctct ttccttgaag ggttaatgct ccaaccagcc tcagattggt
120tcgcttgaat cttaaaatta cttttctggt cacgcgcgcc gaaggtctaa gcatttgtga
180aatgtctttt ttcccccccc ccaccccttg atgctgttct ctttgggctg tcttaattac
240acaggggttg agaaaccaaa ttaaaattag gcgtgtctgg tcaacagtga tcacgttgca
300tgcttttagc tttgcttgtt gaagttgctt ctcctccctg agtggctttc ctcctttttt
360tttttttttt tttattttaa aaaggaaata tcataagctc tttcagaaat actcacagga
420agtgagtgtc cgtatgctgg ttactcacca gcaactgant gttggcaggt ggagaatgct
480accgcanccn cccanacaga tctgcaaact ggcccnttnc agangatnaa aacagggtgc
540gtggaantan ggtttttgnn naaangcant ttnaaagnaa atgggcactg cattnnnttc
600nagggggggg anttaagnaa cangnttggg gtnaaaaagn ncntgnttcc attnnggngg
660tnctgctcct ttnaaanggg nggnnggttt naaaaaaaag ggccccncnc cccanaaaaa
720aattttttgg nggaaaacct nccaaaaaaa anaccccncn tttttgn
76785761DNACercopithecus aethiopsmisc_feature(1)..(761)n is a, g, c, or t
85cngcttgcca acctacaggt ggggtctttc aaaatattgc gttacaaata tcattttggt
60gtatgtatgt caaaaccaaa actgccttta tgtcaatatg ctgtaaaaat ctatcagaat
120atatcttaat tcttaacttt cattgttgtc tgtgggttgt cttgtataat tattatcaca
180tctacagtat tttctgtagg taaatatgaa atgtattata aatgtaccag ggggaaaatg
240ccctttaata agcctttccc tagacaaagc accatttagg cgtttagaag caagaactag
300tgaaatcaga aattgctgtc atacatactc acctgtgaat ggtcgtacaa aggatcccaa
360gcgcaggact tgtcctggaa gcagaggatc ggattccacc aggaaaagag gcaagtagaa
420atgccaaatg ccagcgctcc ctttncccag ctcatcttat ttgtaggcac tcagattttg
480gaatcctcca ggactaacat taaaacccca ctagggngtt tncctaatnc cgggaaanga
540gncagtaggn caaacaactt atccccncna nanaggaaca attccttgag ctccccncct
600gtttcngaaa ccctnttccc ttntgggncc ctgnanaagg nctgcccnaa tgctngggag
660nccnccnggt tttnatgaaa accatntnaa aatncccnaa agttnccccc ccaaggnaan
720nttccnttta aanttttggg aaaaaaancc ccntnanaaa n
76186791DNACercopithecus aethiopsmisc_feature(1)..(791)n is a, g, c, or t
86tnggggacca gcttgccaaa tctacaggtg gggtctttca aaatattgcg ttacaaatat
60cattttggtg tatgtatgtc aaaaccaaaa ctgcctttat gtcaatatgc tgtaaaaatc
120tatcagaata tatcttaatt cttaactttc attgttgtct gtgggctgtc ttgtataacn
180attatcacat ctacagtatt ttctgtaggt aaatatgaaa tgtattataa atgtaccagg
240gggaaaatgc cctttaataa gcctttccct agacaaagca ccatttaggc gtttagaagc
300aagaactagt gaaatcagaa attgctgtca tacatactca cctgtgaatg gtcgtacaaa
360ggatcccaag cgcaggactt gtcctggaag cagaggatcg gattccacca ggaaaagagg
420caagtagaaa tgccaaatgc cagcgctccc tttccccagc tcatcttatt tgtaggcact
480cagattttgg aatcctccag gactaacaat aaaaaccaca ctaggttgtt ttcctaattc
540ctgtgaaatg agtcagtagg tcaaacaact tatccactcc agagagagaa caattccttg
600agctacactc cctgtttcca gtaaccctat tccctctctg tgtccctgga taaagtgctg
660ncnacaatgc atgganagcc cccgggttct gatgaaancn atngaaagat ngcanaaagt
720agctgcctta agggaangtt cccttngaaa tttaggnaaa aaaanccnnt aaaaanacng
780gnggtcggtt t
79187783DNACercopithecus aethiopsmisc_feature(1)..(783)n is a, g, c, or t
87ttgggganca gcttgccaan tctacaggtg gggtctttca aaatattgcg ttacaaatat
60cattttggtg tatgtatgtc aaaaccaaaa ctgcctttat gtcaatatgc tgtaaaaatc
120tatcagaata tatcttaatt cttaactttc attgttgtct gtgggttgtc ttgtataatt
180attatcacat ctacagtatt ttctgtaggt aaatatgaaa tgtattataa atgtaccagg
240gggaaaatgc cctttaataa gcctttccct agacaaagca ccatttaggc gtttagaagc
300aagaactagt gaaatcagaa attgctgtca tacatactca cctgtgaatg gtcgtacaaa
360ggatcccaag cgcaggactt gtcctggaag cagaggatcg gattccacca ggaaaagagg
420caagtagaaa tgccaaatgc cagcgctccc tttccccagc tcatcttatt tgtaggcact
480cagattttgg aatcctccag gactaacaat aaaaccacac taggtnggtt tcctaattcc
540tgtgaaatga gtcagtaggn caannantta tncnctccag agagagaaca attccttgng
600ctacactccc tgtttcnnna acccnattnc ctttctgngn ccctgganaa aggggtgccc
660anaatgcntg gggnnncccc ccggntcttg annaaaaacn tnttaaaaan ngccnaaagt
720ancctccntc nanggaagnt tcccctttta aattttnggn naaaaaannc ccttnaanta
780ann
78388769DNACercopithecus aethiopsmisc_feature(1)..(769)n is a, g, c, or t
88ttggnattgn ccagcggnta acaatttcac acagnaattc cgtatttgaa atttggggac
60aaacaaacat aactctttct ctttccttga agggttaatg ctccaaccag cctcagattg
120gttcgcttga atcttaaaat tacttttctg gtcacgcgcg ccgaaggtct aagcatttgt
180gaaatgtctt ttttcccccc ccccacccct tgatgctgtt ctctttgggc tgtcttaatt
240acacaggggt tgagaaacca aattaaaatt aggcgtgtct ggtcaacagt gatcacgttg
300catgctttta gctttgcttg ttgaagttgc ttctcctccc tgagtggctt tcctcctttt
360tttttttttt tttttatttt aaaaaggaaa tatcataagc tctttcagaa atactcacag
420gaagtgagtg tccgtatgct ggttactcac cagcaactga gtgttggcag gtggagaatg
480ctaccgcagc cgcccagaca gatctgcaga ctggccccat tgcagangat tagacacagg
540gtgcgtggat catangggtt tttgtacaga aggcagtttt aagangaaan tgggcactgc
600atgtcatctc nanggggngg tgattcangg ancanggctg ggggtnaaaa gcacctggct
660gccattnngg agntcctgct aatttttaaa nggcagggtg gttttaaaaa aaaagctccc
720ccccccccaa aaannnnttt tttggaggna naacttccaa aangaanga
76989754DNACercopithecus aethiopsmisc_feature(1)..(754)n is a, g, c, or t
89cagcttgcca acctacaggt ggggtctttc aaaatattgc gttacaaata tcattttggt
60gtatgtatgt caaaaccaaa actgccttta tgtcaatatg ctgtaaaaat ctatcagaat
120atatcttaat tcttaacttt cattgttgtc tgtgggttgt cttgtataat tattatcaca
180tctacagtat tttctgtagg taaatatgaa atgtattata aatgtaccag ggggaaaatg
240ccctttaata agcctttccc tagacaaagc accatttagg cgtttagaag caagaactag
300tgaaatcaga aattgctgtc atacatactc acctgtgaat ggtcgtacaa aggatcccaa
360gcgcaggact tgtcctggaa gcagaggatc ggattccacc aggaaaagag gcaagtagaa
420atgccaaatg ccagcgctcc ctttccccag ctcatcttat ttgtaggcac tcagattttg
480gaatcctcca ggactaacaa taaaaaccac actaggttgt tttcctaatt cctgtgaaat
540gagtcagtag gtcaaacaac ttatccactc cagagagaga acaattcctt gagctacact
600ccctgtttnc agtaacccta ttccctctct gtgtccctgg ataaagtgct gcnacaatgc
660atggggagnc caccgggttc tgaatgagac aatcgtaaan atngccaaaa nttagctgcc
720ntcangggaa anttnccntt tgaaatttaa gnaa
75490866DNACercopithecus aethiopsmisc_feature(1)..(866)n is a, g, c, or t
90tnggggaacc ctgnccagna ccttttttac tcatatccgg atcctgacct acattcagtg
60ttctagattg aaatcacaga ttttggatag agaaaaaaaa atattctctg caatctaata
120aaaccaactt tttttttttt tttttttttt tttgagacag agtcttgctc catggcccag
180gctagagtgc agtagcacga tctcggcttg ctgcaacctc tgcctgtngg gttcaaccga
240ttctcctgcc tcctgtctcc tgccccagcc tntcaagtag cagggattac aggcatgtgc
300catgatgccc agctagtttt ttgtattttt agtagagatg gggtcttgcc atgttgccca
360ggctggactt gaactcctga cctcaggtga tcaggccatc ttggcctccc aaagtgttgg
420gattacaggc gtgagccatc ctgcctggcc aaaaccagca tattttatgg ataggaaatt
480gaggcttaga tggggggaga aaaacattac acagattaaa ccacagctaa tgtcaagtgg
540tgaccaaagg cgaatctttt attgcaggct gtgggttttt ccatgtggct ggtggtacac
600tgcaccaagc agcacacaca ctaggccagt ttcctttgca gacccagttg caatcccatc
660tntaanccag gatactatta ggtctcnaca ncctatggna ttttagggtg ctcanagttt
720agggtgggaa aaggggacta anctncttgg nttaaggtnt ntccactggn ccctcncttt
780nggnccnggg antttnatgc ccaaaancgg tngggctttt ttgggggnan aannccaanc
840cnngggaaaa aaacnttttt gttang
86691783DNACercopithecus aethiopsmisc_feature(1)..(783)n is a, g, c, or t
91tgggnntgnc cagcggntaa cantttcaca cagaattccg tatttgaaat ttggggacaa
60acaaacataa ctctttctct ttccttgaag ggttaatgct ccaaccagcc tcagattggt
120tcgcttgaat cttaaaatta cttttctggt cacgcgcgcc gaaggtctaa gcatttgtga
180aatgtctttt ttcccccccc ccaccccttg atgctgttct ctttgggctg tcttaattac
240acaggggttg agaaaccaaa ttaaaattag gcgtgtctgg tcaacagtga tcacgttgca
300tgcttttagc tttgcttgtt gaagttgctt ctcctccctg agtggctttc ctcctttttt
360tttttttttt tttattttaa aaaggaaata tcataagctc tttcagaaat actcacagga
420agtgagtgtc cgtatgctgg ttactcacca gcaactgagt gttggcaggt ggagaatgct
480accgcagccg cccagacaga tctgcagact ggccccattg cagaggatta gacacagggt
540gcgtggatca tanggttttt gtacagaagg cagttttaag aggaaattgg tcactgcatg
600tcatctcgag gggtggtgat tcaaggagca gggctngggg gtcanaangc acntggctgc
660catctcgggg gttcctgctc acttntnaaa gggcaggctg gcttntaaaa anaaatgctn
720ccttcacccc caaanaggga ttttttttgc agngaataac ttcccaaaaa tgaatngccc
780cna
78392775DNACercopithecus aethiopsmisc_feature(1)..(775)n is a, g, c, or t
92ttggggaanc agcttgccaa anctacaggt ggggtctttc aaaatattgc gttacaaata
60tcattttggt gtatgtatgt caaaaccaaa actgccttta tgtcaatatg ctgtaaaaat
120ctatcagaat atatcttaat tcttaacttt cattgttgtc tgtgggttgt cttgtataat
180tattatcaca tctacagtat tttctgtagg taaatatgaa atgtattata aatgtaccag
240ggggaaaatg ccctttaata agcctttccc tagacaaagc accatttagg cgtttagaag
300caagaactag tgaaatcaga aattgctgtc atacatactc acctgtgaat ggtcgtacaa
360aggatcccaa gcgcaggact tgtcctggaa gcagaggatc ggattccacc aggaaaagag
420gcaagtagaa atgccaaatg ccagcgctcc ctttccccag ctcatcttat ttgtaggcac
480tcagattttg gaatcctcca ggactaacaa taaaaaccac actaggttgt tttcctaatt
540cctgtgaaat gagtcagtag gtcaaacaac ttatccactc cagagagaga acaattcctt
600gagctacact ccctgtttcc agtaacccta ttccctctct gtgtccctgg ataaagtgct
660gccaanaatg catggagagn cccccgggtt ttgaatgana cccatcgtaa agatngccaa
720aagntagctg ccttcaaggg aagttnccnt ttganattta gnagaaaaag tccnt
77593837DNACercopithecus aethiopsmisc_feature(1)..(837)n is a, g, c, or t
93ttngggganc tagcttgcca aanctacagg tggggtcttt caaaatattg cgttacaaat
60atcattttgg tgtatgtatg tcaaaaccaa aactgccttt atgtcaatat gctgtaaaaa
120tctatcagaa tatatcttaa ttcttaactt tcattgttgt ctgtgggttg tcttgtataa
180ttattatcac atctacagta ttttctgtag gtaaatatga aatgtattat aaatgtacca
240gggggaaaat gccctttaat aagcctttcc ctagacaaag caccatttag gcgtttagaa
300gcaagaacta gtgaaatcag aaattgctgt catacatact cacctgtgaa tggtcgtaca
360aaggatccca agcgcaggac ttgtcctgga agcagaggat cggattccac caggaaaaga
420ggcaagtaga aatgccaaat gccagcgctc cctttnccca gctcatctta tttgtaggca
480ctcagatttt ggaatcctcc aggactaaca ntaaaacccc actagggggn ttncnnantc
540ctgngaaatg agtcagtagg ncaaacannt ttncnctcca nanannnaan antccntggn
600ntacnctccc tgnttcagna acccnattcc ctncntgggn ccnggnaaaa gggcgnccca
660aatggnnggg ngncccccgg nttntnanga aacccatnnt aaaattnccc aaaantttnc
720nccccnnann gaaannnncc nttttaaatt ttngganaaa aaanccccnt naaaaaaana
780ngggggcggn tttntttttn aaagaaanaa anattttttt ttnngggagg ggttnnt
83794837DNACercopithecus aethiopsmisc_feature(1)..(837)n is a, g, c, or t
94ttggggnacc ctgncagncc anttttactc atatcggatc ctgacctaca ttcagtgttc
60tagattgaaa tcacagattt tggatagaga aaaaaaaata ttctctgcaa tctaataaaa
120ccaacttttt tttttttttt tttttttttt gagacagagt cttgctccat ggcccaggct
180agagtgcagt agcacgatct cggcttgctg caacctctgc ctgtcgggtt caaccgattc
240tcctgcctcc tgtctcctgc cccagcctct caagtagcag ggattacagg catgtgccat
300gatgcccagc tagttttttg tatttttagt agagatgggg tcttgccatg ttgcccaggc
360tggacttgaa ctcctgacct caggtgatca ggccatcttg gcctcccaaa gtgttgggat
420tacaggcgtg agccatcctg cctggccaaa accagcatat tttatggata ggaaattgag
480gcttagatgg ggggggaaaa ancnttnccc aaattaancc acagcttatg tnaagtggtg
540ancnanggcg aatcttttat tgnaggctgg gggnttttcc atngggntgg ggggnncctt
600gncccaggcg gnccnnnctt tggnccnttt tcttttggaa cccngntgca atcccctttt
660taanccggga atcttttggg tttcncnccc cttgggnatt nngggggccc caanttnngn
720nggggnaagg ggnaaaaacc cctttggntn agggntttaa aangggnccc ccctttggnc
780cngggnnttt tntnccnaan ngggnggggt ttttttgngg annaacncnn acnnggn
83795812DNACercopithecus aethiopsmisc_feature(1)..(812)n is a, g, c, or t
95ttggggttgc gagcggntaa cantttcaca cagaattccg tatttgaaat ttggggacaa
60acaaacataa ctctttctct ttccttgaag ggttaatgct ccaaccagcc tcagattggt
120tcgcttgaat cttaaaatta cttttctggt cacgcgcgcc gaaggtctaa gcatttgtga
180aatgtctttt ttcccccccc ccaccccttg atgctgttct ctttgggctg tcttaattac
240acaggggttg agaaaccaaa ttaaaattag gcgtgtctgg tcaacagtga tcacgttgca
300tgcttttagc tttgcttgtt gaagttgctt ctcctccctg agtggctttc ctcctttttt
360tttttttttt tttattttaa aaaggaaata tcataagctc tttcagaaat actcacagga
420agtgagtgtc cgtatgctgg ttactcacca gcaactgagt gttggcaggt ggagaatgct
480accgcagccg cccagacaga tctgcagact ggccccattg cagaggatta gacacagggt
540gcgtggatca tagggttttt gtacagaagg cagttttaag angaaattgg tcactgcatg
600tcatctcgag gggtggtgat tcanggagca gggctggggg tcanaangca cgtggctgca
660tctcggnggt nctgctcant tttaaagggn ngctggnttt aaaaataang ntncttcacc
720ccaaaangaa ttttttgcag gnaaannttc naaaaganna cccnantttt tgnnaaaacn
780tgggaaancc ccntttnaan ggnggnttta an
81296805DNACercopithecus aethiopsmisc_feature(1)..(805)n is a, g, c, or t
96ttggggancn gcttgccaan tctacaggtg gggtctttca aaatattgcg ttacaaatat
60cattttggtg tatgtatgtc aaaaccaaaa ctgcctttat gtcaatatgc tgtaaaaatc
120tatcagaata tatcttaatt cttaactttc attgttgtct gtgggttgtc ttgtataatt
180attatcacat ctacagtatt ttctgtaggt aaatatgaaa tgtattataa atgtaccagg
240gggaaaatgc cctttaataa gcctttccct agacaaagca ccatttaggc gtttagaagc
300aagaactagt gaaatcagaa attgctgtca tacatactca cctgtgaatg gtcgtacaaa
360ggatcccaag cgcaggactt gtcctggaag cagaggatcg gattccacca ggaaaagagg
420caagtagaaa tgccaaatgc cagcgctccc tttccccagc tcatcttatt tgtaggcact
480cagattttgg aatcctccag gactaacaat aaaaaccaca ctaggttgtt ttcctaattc
540ctgtgaaatg agtcagtagg tcaaanaact tatccactcc agagagngaa caattccttg
600agctacactc cctgtttcag naaccctatt ccctctctgg gtccctggat aaagggctgc
660cacaatgcat ggggagcccc cnggntnttg atggnaacac tcntaaaaat tgccaaaagn
720tnnctgcctn aangaaaant nccctttnaa tttttggana aaaaanccct tnaanaaacn
780ggggggcggt ttttcnttaa agaaa
80597854DNACercopithecus aethiopsmisc_feature(1)..(854)n is a, g, c, or t
97ttggggaacn ngcttgccaa ntctacaggt ggggtctttc aaaatattgc gttacaaata
60tcattttggt gtatgtatgt caaaaccaaa actgccttta tgtcaatatg ctgtaaaaat
120ctatcagaat atatcttaat tcttaacttt cattgttgtc tgtgggttgt cttgtataat
180tattatcaca tctacagtat tttctgtagg taaatatgaa atgtattata aatgtaccag
240ggggaaaatg ccctttaata agcctttccc tagacaaagc accatttagg cgtttagaag
300caagaactag tgaaatcaga aattgctgtc atacatactc acctgtgaat ggtcgtacaa
360aggatcccaa gcgcaggact tgtcctggaa gcagaggatc ggattccacc aggaaaagag
420gcaagtagaa atgccaaatg ccagcgctcc ctttccccag ctcatcttat ttgtaggcac
480tcagattttg gaatcctcca ggactaacaa taaaaaccac actaggttgn tttcctaatt
540cctgtgaaat gagtcagtag gtcaaacaac ttatccactc cagagagaga acatttcctt
600gagctacact ncctgnttcc agtaacccta ttccctctct gggtccctgg ataaagggct
660gccnacaatg catngggggg ccccccgggt tntgaangaa aannntnntt aaaaatngcc
720aaaanntaac tnccctcaan ggnnannnnc cccttttnaa ntttttgggn aaaaaaaanc
780cccntnaaaa aananagggg gggnggnttt ttttttnnaa aanaanaann aanntttttt
840tttggggnan annt
85498912DNACercopithecus aethiopsmisc_feature(1)..(912)n is a, g, c, or t
98ttttgttgtt ggggnntgna gcgncggctn aacttttttg cacacagaaa ntcacaggaa
60cacaggagtc agtttcttca gcaangtctt gcttgtccng ttntgaacgg taggatnttg
120tcgctatatt tgnacacatg agggacctnt gtggagcttc caaatagtgc gctnggcgca
180atatnnacaa ganacagccc ttagcgantg gcttgttgnt gggngagatg ntgctctgtg
240ngatgaattn acanatcaca gagttttttn tttgnntgct tgtttcctgt tntnaacggt
300ggatttgtgn ttttggacca tgggatntct atgggctnan agangtccta tgtgngaata
360nggcaatgta ctgcctttna naactggaat gangctnggt gagaanctgc tctgtgttct
420gtganttccg tactntgaaa tttggggacn aacaaacata nctctttttt cttttccttg
480aagggntaat tgctccaacc ccgccncaga ttgggntngc ttgaatctta naattncttt
540tctggtcccg cccgccgang gntnagcttt tgngnaaatg gtnttttttc ccccccccca
600ccccttggtg gngggtnttt ttgggcttgg nnttnanntn cccccggggg nntngnnnna
660ccnattttnn attttgggnn nttttgggnc ncangggttc cnnnnnnnnn gnctntnann
720cttggcttgn nngaangntg nttntccccc cccggggggg ttccccccnt tttttttttt
780tttntttttt tttnnagggg anttttntng tctttttnna anncncncgg gntggggggn
840tcnntttttt gtttttnncn nnnnttggnn nngggggggg gganntttct ctnnnncccc
900cnnnntttnn gc
91299807DNACercopithecus aethiopsmisc_feature(1)..(807)n is a, g, c, or t
99ctgcttgcca anctacaggt ggggtctttc aaaatattgc gttacaaata tcattttggt
60gtatgtatgt caaaaccaaa actgccttta tgtcaatatg ctgtaaaaat ctatcagaat
120atatcttaat tcttaacttt cattgttgtc tgtgggttgt cttgtataat tattatcaca
180tctacagtat tttctgtagg taaatatgaa atgtattata aatgtaccag ggggaaaatg
240ccctttaata agcctttccc tagacaaagc accatttagg cgtttagaag caagaactag
300tgaaatcaga aattgctgtc atacatactc acctgtgaat ggtcgtacaa aggatcccaa
360gcgcaggact tgtcctggaa gcagaggatc ggattccacc aggaaaagag gcaagtagaa
420atgccaaatg ccagcgctcc ctttncccag ctcatcttat ttgtaggcac tcagattttg
480gaatcctcca ggactaacan taaaacccca ctaggttgnt ttcctaattc ctgtgaaatg
540agtcagtagg tcaaanannt ttncnctcca ganaggaaca attccttgag ctanctccct
600gtttcaggaa ccctattccc ttntgggncc ctggaaaang gctgccacan tgctgggaag
660cccccgggtt tnaangnaaa aatcnnaaaa ttgccaaaan tancnncccn agggnnggtn
720cccttanant tttnggaaaa aanccccnta aaaaancngg ggncgnnttt tnttaaaana
780aaanaaattt ttnttngggn gntttnn
807100814DNACercopithecus aethiopsmisc_feature(1)..(614)n is a, g, c, or
t 100ttggnattgn ccagcggnta acaatttcac acagnaattc caggcacagt tggctgttaa
60ctagaatagt aagtggcttc ctaggctctg tcactcctaa actgtagggg gcttccagcc
120tcggagatta cggaagtagt acttttcatt agcaagctca agaagaagtg tcaaaatagg
180atgacacttt cctagtcgct ctgcaaaaac ccaaaaaacc agaaggggtg tcatctagac
240actcctaagt ctatgcaggt gtcagcctgc cctcacccaa caccagccag cagcgtgcac
300cattcaacca tatcttaact tgccccttac aaattgacac ttacactaac aagccctttg
360atctcatttg tttaaaatga cagatataca accctcacgg gggttcccac tcaaggcctt
420ncagcctncg ncctgcccct gnccaccccc aaacctacac acgtgttagc ccgacaccgg
480ccccaccggg tcccacgtgc acctggtcta acacactncc cacgtgtggg cgccccacgg
540gctttctnan gtagctgang gnccccccat gacccccggt tntccaaaan aaaaaaacgg
600gaaggacaag ggcccttttc nccgnggncc caaccntngg ggggggnggt ccaacccctt
660tnttnnntat aaaccccaaa aaananaaag ggcccggggn ccnncccccc ccttnaaaaa
720ncccgncccc cnttttnccc cccnaaaaaa nggggggaaa aaaaaaattt aaaaaaannc
780ntttttttnt tttnnccccc ccnncatnta nata
814101756DNACercopithecus aethiopsmisc_feature(1)..(756)n is a, g, c, or
t 101ggntctttac aaccttcaca tagacatcta actatgctct tacctaacct ctagcgctct
60tggtcccaga gtctaaatag gagccccaaa ctaatcactg tatggtagtc gaacttcccg
120gcacttcccc gacaatctac aaccccatcc aaaggggtca gaaactggta ataaaatacc
180agctatgagc ctntccttcc cctcaagaga tctatcaatt cggcctcacc ttcccacctc
240tagcctgcgg gaacaaacat cccaggatcc cgggcggttt cgattgacgt tacttccggg
300aaaagtaacc ttgcttcggc ggttgcgggc ctgaaaagct ctcgcgacat ttcctcccgc
360nagatctgct tgctcactgt agcgatgaca tcctcctcct cctccccgcc gcctttcggc
420aatcttcgcc agtcccagcc ccgaccaatc tgtactcaga tggcatggat cagggtctcc
480cctcgaaccc cggttcgcac ggggcgtcag gtggcagcgg cggggtgcga gctgcgcgag
540gccnacngca gcggcactgc gggtggccng gggcaggcca caagcantga ntgtnggccg
600ggccgggggn aacccacccg ngtagcggct cnantgnttc tggcctggct ttngngccct
660tttctccccc ccncangggt tcccgggnnc ctgttncgnt tcttttaann ggggaaaggg
720gccccccccc ccccngncca angccccnnn acnnnt
756102804DNACercopithecus aethiopsmisc_feature(1)..(804)n is a, g, c, or
t 102tgggntgncc agcggntaac antttcacac agaattccaa ttatggggaa caagacatct
60gaattggcta aaactccttg cagcagcaaa aaggaaaagc aaaacaaaac catacatgtg
120gtttctgtct ttgcttcctg tcttttcttc caccttactc ctccttcccc ttccccttcc
180ccttcccctt ccccatcttt gctaccaaaa aaaaatctag agaagccttc tattaacctg
240aaccccttaa agaagtcaga acaaaggcac cacttgccgc tttttgggat gtcgtgtttt
300ctttatggag ttttcaagag taatgggcag atgcttttag gtctacagtt ctgctttcct
360gtattgcact acctgattct ttgacttttg gagataccag aaattacctt gtaccatgag
420aggatttggc tttggcatgt gtaatggcag atgagagcta caaagttaag agtggctgaa
480gatggtttac atgaagtggt cttaggtggt ttagctgagc tcccaggaag ttgttgtcta
540ggatcccaat tctagttcag aggtgcattc ctattattat tatcattact attggtggtg
600ntgntattat tttgagacag agtcttgctc tgttacccca ggctggagtc ctctggcacc
660attacgggtn actggagcct naanttccag gctncagaga tcctcctttt annttcnnag
720tagtgggacn canangnngg nnccccccaa cnnannnatt tttgnncttt tgnaanaann
780gggtttgntt tttngncnnn ntgn
804103795DNACercopithecus aethiopsmisc_feature(1)..(795)n is a, g, c, or
t 103ggnattgncn agcggntaac aatttcacac agnaattctg gagttaggtt gtctgggcta
60ttcaattagt ttctatgtgt ctgacacatg gcagaaactt attaaatgct tgaatgaata
120cataaagcaa gatgacagtt tcagaatgna ccaggtaatt caaagtactg aatccatatt
180aaatttattt tagtctacac agaagtgaag taacactaaa atctgggcat ttaccaggtg
240atggcaagta ttcatttcca tcatccagcc cgttacctgg cacatagtta ctgccctatg
300taaatgctta tcacagcaat caatcaatga aatgtttttc tcatagagtt cggtgaataa
360ctcacgacag catactcaca gaggattcaa agagtatttg acttgtatat attgttttaa
420acagttggaa cctgataatg cagttttcta aaatacagtg aaagggcttg tcctaaaggg
480catgtcagga tatgtgtgag aaaggatgaa cttgtcctgt gaagacaacc ttgcattagc
540tctagcagaa tgagccattg cctacctggg ctggggaagg cggcacctca gtatctccct
600cacctgctcc ctggcacttt aaatccctct gtgaagangt cagttgtaat tttcagtaag
660attgaaggtt tcaaagcact gacccctggg gggaatggat tngcttaagt tggctctgaa
720ngaagnggct gggatnngct ntctganaaa cccgggattg tgaggnaatg gagacngccg
780ggagggtnna anaaa
795104641DNACercopithecus aethiopsmisc_feature(1)..(641)n is a, g, c, or
t 104tgggggnacc cagcggntaa cattttcaca cagaaatctc attcaatgaa ctgttatggg
60gtctcacatt gtaccaggca ctggggattc agcttccagt tcatagtctg catgcaaacc
120gacatgcagg tagacatgca gacagaaaat cggaacgcaa cacggtaagt gctatgctag
180agaatgagaa ggactgtcag taatcacaac cacctttcac tgggttcctt cagtgtgcca
240ggctcgtgta cattattttg tttagtgctc acaattgtat ggactgtgta ctatcatttg
300ccagattata tggatgaaga aactagactg agggggttaa ataactcgtc caagatcatg
360cagacaaaaa accacagaga ttattttcca atacaaactc tctggctgta cagctcaagt
420tcttaaacac tgggccaacc agtctgaatc tgagaggagg cattctaagg cttacaggta
480agtgggaatt gaaagggttg agggaagcct tctggaggag atgccattac actgaatgtt
540gaatgagtag gagttagcta tctccagagg ggtagtggct gtgaaggggc gaggggtana
600gggtgggaag gggatgatgg aaggtggtag agtggnnaca g
641105757DNACercopithecus aethiopsmisc_feature(1)..(757)n is a, g, c, or
t 105cngncttgcc aacctacagg tggggtcttt caagatctgc tgacagtgaa gctaaatctg
60gcggaagcaa aggattcact ttctcataat ggattaactc atcctatttg cctcttaaac
120aatgggtatt ttaaagacag aagttgaagg aagtccaagt atccaatttt aaggatgcct
180attagagcag ttataagaga gtgtctctct ttctctctct tctttctttc tcttggtagg
240agtatgcagg aggtcattta aaagccagat agtgatacaa atcacaatgc agaaaaacat
300ccccgtggac tcctccctgt cctatgtttg acattcttaa aatctatgtc ccaggtcttg
360aaatctttaa ataatctacc atgttctttg gcctgccctg ggaaatctat ttcagtacca
420gagctatgct ggttacacac cttttctgac tcatgttccc aagtgatttt attccagata
480cgatttgggg acagttacgt gtactgttct gatatcttcc taaaaggaaa ttatttttgg
540aagtaaagtc actgataaaa tcanctcagg aaaatgcact ttgtaaatat taaaatataa
600actttttnaa ggncntgctg gaaaanacta attgattttc ctgggnagca gttccatnga
660acancgatng atctttaggg ggnagtgaan ggccccnatt tgaaaaangg gggcgggaaa
720ngttcaaata ntttttccaa angggnncct anntnnt
757106640DNACercopithecus aethiopsmisc_feature(1)..(640)n is a, g, c, or
t 106ttggggnanc gagcggntaa cattttcaca cagaaattca ttcaatgaac tgttatgggg
60tctcacattg taccaggcac tggggattca gcttccagtt catagtctgc atgcaaaccg
120acatgcaggt agacatgcag acagaaaatc ggaacgcaac acggtaagtg ctatgctaga
180gaatgagaag gactgtcagt aatcacaacc acctttcact gggttccttc agtgtgccag
240gctcgtgtac attattttgt ttagtgctca caattgtatg gactgtgtac tatcatttgc
300cagattatat ggatgaagaa actagactga gggggttaaa taactcgtcc aagatcatgc
360agacaaaaaa ccacagagat tattttccaa tacaaactct ctggctgtac agctcaagtt
420cttaaacact gggccaacca gtctgaatct gagaggaggc attctaaggc ttacaggtaa
480gtgggaattg aaagggttga gggaagcctt ctggaggaga tgccattaca ctgaatgttg
540aatgagtagg agttagctat ctccanaggg gtagtggctg tgaangggcn aggggtaaag
600ggtgggaagg ggatnatgga aggggtnnaa tnggnncnng
640107818DNACercopithecus aethiopsmisc_feature(1)..(818)n is a, g, c, or
t 107ttggggacca gcttgccaat tctacaggtg gggtctttca agatctgctg acagtgaagc
60taaatctggc ggaagcaaag gattcacttt ctcataatgg attaactcat cctatttgcc
120tcttaaacaa tgggtatttt aaagacagaa gttgaaggaa gtccaagtat ccaattttaa
180ggatgcctat tagagcagtt ataagagagt gtctctcttt ctctctcttc tttctttctc
240ttggtaggag tatgcaggag gtcatttaaa agccagatag tgatacaaat cacaatgcag
300aaaaacatcc ccgtggactc ctccctgtcc tatgtttgac attcttaaaa tctatgtccc
360aggtcttgaa atctttaaat aatctaccat gttctttggc ctgccctggg aaatctattt
420cagtaccaga gctatgctgg ttacacacct tttctgactc atgttcccaa gtgattttat
480tccagatacg atttggggac agttacgtgt actgttctga tatcttccta aaaggaaatt
540attttggaag taaagtcact gataaaatca actcaggaaa atgcactttg taaatattaa
600aatataaaca ttattaaagg ccatgctgta aaaatactaa ttgattttcc tgggtagcag
660ttacaataga acancgatng atctctaagg ggagagtgaa aggacctcan tttganaaac
720gtgaggcagg aaaagnttca aatnattatt tncaanaggg ntccctaagt tgttncttaa
780anaaaatttt tttcntnaaa aaaaaacnnt aanggcca
818108608DNACercopithecus aethiopsmisc_feature(1)..(608)n is a, g, c, or
t 108ttgggaccct gtcagaccan ttttactcat atcggatccc ctgaggtcgg gagatcaaga
60ccaccctggc caacatggtg aaaccctgtc tctactaaaa tacaaaaatt agccaggcgt
120ggtggcaggc gcctgtaatc ccagctactc aaaggctgag gcaggagaat cgcttgaacc
180taggaggcag aggtggaagt gagccgagat cataccactg cactccagcc tgggcatcag
240agccagactc tgtcgcaaaa aaaaaaaaaa aaaaaaaaaa attagctacc tctcccatcc
300anaaatgaga gtcgaggctt ctgacttccc gggctcaatt tatcctcccg cctcagcctc
360ttgaggaact gggactacag acgtgcacta tcacacttgg ctaatttttt tgagatgatg
420tcttgctctg tgcccaggct ggagtacagt gacacaatct cagctcactg caacctccgc
480ctnctgggtt caaccgattc tnttgcttca gcctcccaag tagctgggat tacaggcgtg
540ccccacaacg tccagntatt tttgtatttn aagnagagac nggggnnncc cctgttggnc
600ngggnggg
608109516DNACercopithecus aethiopsmisc_feature(1)..(516)n is a, g, c, or
t 109ngggancctg nccagnacct ttttactgca tatcggatcc tgagaagctc ctgattttcc
60ctcaagccta aggcaaagta gtattcagaa cctcctatcc cactgactcc gagagcctgt
120cctccgatat ctccaagaga gcctatcctc cgataggagg ggaagcccct ccaacctgca
180ggtatcctcc ccagactcac catttctccc accccacact ggtggcttcc aaactttccc
240tctcataaca aggcgccctg tcacccagac tgcttccctc ggcttgagga ggaggggaag
300gcgcacgaag taggaaggaa cttggggaga gggcgggcgg agggtgggcg aagcactgag
360gggagggcgg tgaagaaggc agaagtcagg cagtgagagg gagaagcggc gggggcaggt
420gagggcgggg gagtggggat ggggccgggg aaaggggccg agaggacgcg gagggggcag
480aggtagggna caggagggga ggggaggggg agggcc
516110802DNACercopithecus aethiopsmisc_feature(1)..(802)n is a, g, c, or
t 110tnggggaacc tgccagacct tttttactca tatcggatcc ttattgcctg gctatttcag
60cctgggaggg gtttggctgg aatatccctg gggaggcagg ctctcagggc taaaatagtg
120ggagaaaaga ttaaaccttt aggaaactgg tacacatcag cgctaagtgt gactcaggga
180gaaacaagaa ctaggacact tattactcca aaggagttgt atttggttca actcttgtat
240tttcttatta aaacttttgc aaagtgggtt gagaagaaag tgttacttcc agtgttacac
300cctcaacact ttttcctgtg gagactccag catgttcatt atgttttctg aagccatggc
360actgtagtac tctttcattg ttgttattat tatttaataa tataaaatga gacatttttg
420ctccattttt cattcatatt tttgtcctaa ttacttttta aatatattct ggtgtcaggt
480caatatttat agtctaacgt ttaagactta gactttggtt cttaggatgt tatttttgaa
540tcagctgcgt ctggtaaggt aatagatatt gaaagtgcct tgtaaattgt ccagtggcat
600aaaagtattg tcatatcttt atgacataaa agaaaantgt tttcttcttt ttagcatgga
660aaactttaca anccatttgc tggtgacngg ngangncctn ggggttggat ttcatgattt
720tggggtccct tgagggtcca aantaccntt ctaanagngg aaanttttca nnaattcatg
780antgncctna ttnaaanann tt
802111851DNACercopithecus aethiopsmisc_feature(1)..(851)n is a, g, c, or
t 111tacttttttt tgggggnncc aagncggnta acattttcac acagaaatct ccaagttccn
60naggaccgca gnatcctccc cagaacccct gngaccaagt cactgtggtt ggntgtgctg
120ggcatccctg aggcccagcc actcaacttt actggctcca ggattctata gaaagggaaa
180ggggtagaaa atctcaaaag gcttcttcct ttcagggagg gggttccctc tcagcggctt
240ctggaatctc tacccactcc agccgacttt tgaggccatg tggtcctgga acaaggcccc
300tctgagggcg gcagatgggg caggcggccc aggcacacag catggttggc tctgcggccc
360agggcccaca aaagccttat tgagtcacca ccagcccccg gcagaggctg aggtggcagt
420ggcgccgagc gcctgccacc taatgactgt cctggcacag ccagatgttc cgcagacctc
480cggagcagcg ggaccaaggg cccgcccggg ccagccggca ccngannagg ccacttttaa
540tttccaatta accagntttc agnntgancn aaanaggggg gcagtnggtg gncccacccc
600cgggcnagta ngccccggcc cnnaaaannc cttncgaagt tntaanactn ccanatntga
660aaccnccacc ncccngaatt cccnatggaa aaantggccc ccagccangg gcaagggntt
720gggncctttc ttttctttgg aaaaggaaat tttggttntt ttnacnaagg ccccccaang
780ggncttnnnt gcccaantnt nccnngnttt ggggggnaat cnttnnnaaa nttttnttaa
840aaccccnatt t
851112773DNACercopithecus aethiopsmisc_feature(1)..(773)n is a, g, c, or
t 112cagcttgcca antttacagg tgggantctt tcaagagcag taaaacgacc tatccaagga
60aactcagcta gtaaaggcag ggacagggta tcgcaggctc tcggaactca cgagtccccg
120ccaggcgcat ggccgctcct ttcccccggt gggcgtggcc aggccaggcc cgtcccctcc
180cctgagcgcg ttcctggcag cccggccggc cgtttnctgc ctgcgtcgct gggcgcgcgg
240gcgggcgggc agcccatctg gcggcccccg cggggcggcg cggggaggcg gcccagactt
300gctggagcca ggcgcctgcc cgggggcccc cctgcccgcc tggagaaccc aggtgtggcc
360gcggcggggg tggggggtgg tgctttcctt cccgctcgct cggctcttnc tgacgcacga
420gggcaggatg cagcctcctc ccgtcctctc ctcggcctcc gcctcccgcg ccctggcccg
480gaatcctgga gggaatccaa acgcggggcg gggaggccgg ggcaggcccc tgaggccccg
540cccctgatag ccatttaata ccaccgcaag tcttgaccgt atttttgggg tgacccanct
600tccctgcttg ggcaagacca gctgaactct gacctnctgg anggccgatt ttaccttgct
660cctcagggac ccnnaaatga tcgtaggaac cngnntcact actgctgtaa gccanancgc
720ttganatatn caattattca gcggnttcaa gtcccggaag cggnttttna cna
773113807DNACercopithecus aethiopsmisc_feature(1)..(807)n is a, g, c, or
t 113ttggggttgc gagcggntaa cantttcaca cagaattctt cagtgaattt cttaagccct
60gagcatcttc tttgtattct gctttaagaa cttgtttgtt tctgtatttc atactcagtg
120gctctggcgc ttggatgccc tggtcccaca gaaggccttg aatactgaat ctgaggatgg
180ggcttgctta taaggacctt actccctgtc ttaaccagat tgtgttttaa cctttcatct
240cactttttac ttttcattca tggatagtgt ttgtcactgt gtgtgtgtgt gtgtgtgtat
300gaatgagtga atgaatatct ctcacactct aaattctttt aaaggcagga agtactgttc
360tcttgtttgc tattttatcc actctgcctc tactgggtct ggcacataat aaagaaagaa
420tgaacaggac aaacacccat tctgaaagtg aacttctctg gcaattgtcg tttgtacata
480ccagctggag catagacaat tggcttttaa tgtggtaagg gaaaaggtca aaaaaagaat
540cgtcattgac caagggcttc accagatgat tttataatca ntccnaaagg gnctttnaan
600aaaaaaggcc ttngaggaac aaatttnttc cnnntggaaa antgntttna aatttttntn
660gaaaaagttt tnanaatttt tgnaaaaccc ccnccccnnt gaaaacntnt aaancnngna
720annngnnnng ggcggggttt naaaaaaaaa aantnccccc cnnnnaanng ggnctttnaa
780aaannnnngn ntnctaaaaa aangggg
807114836DNACercopithecus aethiopsmisc_feature(1)..(836)n is a, g, c, or
t 114ttggggacca gcttgccaan tctacaggtg gggtctttca gtatgtgtca agagtcagaa
60tttaaagaag ataagaaaat taaatacact gagaacaatg catctcntga cattcaaaat
120atgtaagtgc agcaaccagc agtaattcca taggcctttt atcaaccttt gccaaaacct
180ataaaaagaa tatctaaaat tgctttttta tgaaagttcc tatttattct tgtttccctt
240accagagagc ctgctttccc cttactgatg agaacacagg gggtcctggg taaagagtcc
300ataanattta aaaaggagta tgccttggcc tcccatgacc ctcttacttc acaataaggc
360catcttttac ctggtttaga tttgcagact aggtccatta gatacgttgt cattaaatac
420ctatactata ccctaatatt tgtaatcttg acaggtatta ttttcatttt atagacagat
480ctaggaaaat tacatgactt atcggaatcc cttcaaatat cacagagcaa agtcatgatt
540ttaacttgtg tttgccactc tgaaactcac actggaattc gagactagtg tgcgtaacat
600ggcgaaaccc catctctatt tnttnttttc aaaatntntt tttccaaaat ttgctggggg
660tgttggtgtg tgcctgtant ncagcctnct tgggaggctn aannggngga cngcttgacc
720ctgggngnaa aggctaaatn gnctttnttn gcccctggan ttaaccnngg ggaaaaangg
780aacccttntc aaaataaatt ttaaattaaa naangccnag gtttccccna aaaaat
836115839DNACercopithecus aethiopsmisc_feature(1)..(839)n is a, g, c, or
t 115ttgggananc gagcggntaa cattttcaca cagaantcca gtgtgagttt cagagtggca
60aacacaagtt aaaatcatga ctttgctctg tgatatttga agggattccg ataagtcatg
120taattttcct agatctgtct ataaaatgaa aataatacct gtcaagatta caaatattag
180ggtatagtat aggtatttaa tgacaacnta tctaatggac ctagtctgca aatctaaacc
240aggtaaaaga tggccttatt gtgaagtaag agggtcatgg gaggccaagg catactcctt
300tttaaatttt atggactctt tacccaggac cccctgtgtt ctcatcagta aggggaaagc
360aggctctctg gtaagggaaa caagaataaa taggaacttt cataaaaaag caattttaga
420tattcttttt ataggttttg gcaaaggttg ataaaaggcc tatggaatta ctgctggttg
480ctgcacttac atattttgaa tgtcttgaga tgcattgttc tcagtgtatt taattttctt
540atcttcttta aattctgact cttgacacat actgaaagac cccacctgta ggtttggcaa
600gctagctgag gatcgtttcg catgattgaa caagatggat tgcacgctgg ttctccggcc
660gcttgggtgg agaggctatt cggctatgac tgggcacaca gacantcggn tgctctgatg
720ccgccgtgtt cggctgtcan cncagggcnc ccgntttttt tgnaanaccn nctgnccggg
780ccctnatgaa ctgnngacaa ggcacccggt ttntnggttg ncnaaanggn gtttnttgc
839116815DNACercopithecus aethiopsmisc_feature(1)..(815)n is a, g, c, or
t 116tnggggacca gcttgccant tctacaggtg gggtctttca gtatgtgtca agagtcagaa
60tttaaagaag ataagaaaat taaatacact gagaacaatg catctcaaga cattcaaaat
120atgtaagtgc agcaaccagc agtaattcca taggcctttt atcaaccttt gccaaaacct
180ataaaaagaa tatctaaaat tgctttttta tgaaagttcc tatttattct tgtttccctt
240accagagagc ctgctttccc cttactgatg agaacacagg gggtcctggg taaagagtcc
300ataaaattta aaaaggagta tgccttggcc tcccatgacc ctcttacttc acaataaggc
360catcttttac ctggtttaga tttgcagact aggtccatta gatacgttgt cattaaatac
420ctatactata ccctaatatt tgtaatcttg acaggtatta ttttcatttt atagacagat
480ctaggaaaat tacatgactt atcggaatcc cttcaaatat cacagagcaa agtcatgatt
540ttaacttgtg tttgncactc tgaaactcac actggaattn tgngggaaat nntatccgnt
600canaattccc ccnacatgag cgtnanaccc cgaaaaaaga acaangatnt ttttggaacc
660nttttttttg gggnnaanng gngnngnaaa aaaaaaccnc cnntncnacg ggggtttgtt
720ggcgganaan aacnccacct tttttccnaa ggaaangntt tnaaaangcg aanaccaaaa
780ntgtcntttt gnnnggccgg gttggncccn cttna
815117792DNACercopithecus aethiopsmisc_feature(1)..(792)n is a, g, c, or
t 117ttggggganc gagcggntaa cattttcaca cagaaattcc cgacctcaag tgatatatcc
60accttggcct ccaaaagtgc tgggattaca ggcatgagcc accgcgcccg gccccttcat
120gcagtttctc tcactccttt cagaatcgag gagtctgcta ttccatcgac atctaaccca
180ctcctctaaa ccagcctgca atcccagctg gagaactaca atccaatcag ggattaaatc
240taaattcctc ccatctgatc actgggatcc ctacccattc aactcccctc ctcctccaga
300aatgttacca atcccctaaa gcctccaatc acctgttgag ccaccagcca agcgcttact
360aatccctgtc tcccaagctc agacactccc tgtaattgat ggacacgcag cattgggagc
420tttcacattg agctcttact ttgaaacttt gaataagaaa agagctgaaa aaagcagatc
480tcccaatctc ggtgaaactg tagttaaact ccaagtagaa taccccaata aatggatang
540aatganaaat ctcatatggg ttatatangc antatttana aattttggaa ttataggnnt
600anggatncaa acttnnanan tantattcca ttggnntttg gngcncccna ngntaaanaa
660gttnnccnct canaaggaaa nggggngggt nangggctan nccnnaancc annttttggn
720ggntnggnnn aaantttttn ggnccaantt naaanaaann tnntnaaaaa aanggnnccn
780tttttnaaaa aa
792118838DNACercopithecus aethiopsmisc_feature(1)..(838)n is a, g, c, or
t 118gggnaaccga gcggntaaca ttttcacaca gaaantcgga aagtaaagcc aatcttagag
60gctgcaggag gtttgggggc agtatctgat tcagacgctg gctaacgttt cacgatcgcg
120ttcccttttt tcttccaact cggtaagtaa aaaggcaaga tgagaaattt acgtgctgaa
180cttaataaat agttggtgga cgtattgcct tttttttttt ttttttggta agggatgaca
240catctcgtga ctacagttct tttgaggaat aacttttctg ctagtttcca aatcggcacg
300tgaccaaagt cttttcatag gattttagcg tcctgataaa aatcaatggg cagaatttga
360ttgcttttta aaaaatgtgt ttgtcctttg gtctctggca ccattgtaat ggaaaatccc
420tacattgcct gtactctcag aagctgtcca gtggagcaaa actagagata aagaaacctg
480gaacgattca gttaggaact tttaagaagc cagcctttag tttttccttt agaagattat
540gcagttatca tgattgcttc tctagaactt cagtgtgtta tttggattcc taaatctaag
600acaatgctgn ggaagtctgg ggcttttagn attttngggt ctgctgnaga aaatcctcgt
660ttatactaca aagtttctnt tttggaactt tnggaattgg gcattttttn nnttattatt
720ngnatgntng antnannggc aaaactnagn naaccctttt nggtttgcct cnanccggtt
780nttaaanaaa ngggaaaaan cctnanttta aanttttttc cacccttttt tnttttnt
838119820DNACercopithecus aethiopsmisc_feature(1)..(820)n is a, g, c, or
t 119ttgggganct agcttgccaa ntctacaggt ggggtctttc agtggggggc tgtcctgtag
60gttatagaat gtttagcagc aaaaattaaa aattaaataa caaaaataaa aataaaaaag
120aatgtttagc agcatccctg gcctctaccc actagatgtc agcagcacct cccttgcccc
180caggtgtgaa ccaaaaatgc ctgcagacat tgccaaatat ctcctaggag gacaaaattg
240tcctctcttc cacttgagaa ctattactct aaaattaccc agatctgctt tgaatccccg
300ctccacccca tcacaacctg ggtcatcttg gaaaacagac tgaaccttcc tatgcccccc
360gcaaattcct caactgtaac atggagctct tgctgaagaa atgctatgaa aattaaatga
420aatgatgtac gtacaggatt tacacgcaca gaatattcac cgcgccagag tgagtgctca
480ataaatggtc agaaatgagg ggaggctaaa aaaaaataat ttcgagaact caaaaatctt
540atctttaggc ctccagagta ctgtagtcta gacagaagaa atggttgaga tagaancaaa
600agagatgaga gaggttggaa aagaagtgat agaactaagg tattattccc cttatctctt
660aagaacccgg cttggagtca aagccaatag agggtctact tagttttgnc tattactcta
720ctttcaaata taacgaaaat tgcccaaacc caaagtntcc aaaaaaaact ttnnnttnan
780cggggatttc tncncggncn aaaatctaan nccccnctnc
820120797DNACercopithecus aethiopsmisc_feature(1)..(797)n is a, g, c, or
t 120ttggggttgc gagcggntaa cantttcaca cagnaattca gctgatgaat gcagatatga
60accgatggtt caagagctgt agacatacat acctagttta ccacactgat cttcttagta
120taaaaaaaca agcgttacta agaaacatct actttcagca aatggacatg accagaatga
180tacatagaat gatgcaagaa atttcactct accattcatt ttaatcttta cagtaacagg
240atgattgcta tctcaatctg tcattttacc tttttttttt ttttcagaag ttaaagtgta
300tccatacaag ttcaacttaa cattgttaag tgcaaagtta acagtgtaca ctttggagat
360acctttttag gtagaaaatg attttttgtt ttctaataag ttttcccaag taatattaaa
420gaaggttaaa tatgtcattt acttggagaa aacagaaaac catgagaaag tttgggaaaa
480tgctatattt cagagcttaa tatattgaaa cagtaagtaa gacaggaatt ggctaccttt
540taagaacgtt tacaaaaata caaactgann ggaatgcttt tggcaatnaa aatntgacnt
600gaaacattca atggcnnaac attcaanaan gnttnagana tcnttncctt tancatccaa
660natngttttg ncgncntctc aaaaaantgt ntnttttaaa aaanttaggg ntaaaanttt
720ctggnagntt nattaanctt tttttgnncc ctnaaatttt nnccnaaagt tcnttnanca
780aaaaaaaatn ctttttt
797121828DNACercopithecus aethiopsmisc_feature(1)..(828)n is a, g, c, or
t 121ttggggancn gcttgccaan tntacaggtg gggtctttca ccttcttgcc agaaacataa
60aatgcgatgg agctacggcg accgctgccg agacaaaatg gcgccgagaa cctggtttag
120cgcaggcgcc ttggaaagac cctgccccgc ccccgtgcaa gcccctggct gcaattctgg
180gttccgtttc catgggacac tccgccgcca atcctcgtgc cgaactgctc ttcctgaccc
240ctcaattcac caatcagtgc ccagtcaagc acatccggag tcgtctctac caatcatttc
300tcaagacttg cttactcaat aaccaactct ccaataacgt tggtcttcgg aaaaagccaa
360tcataagtgg aagatgtcct acctgctgtt tttcgcacca atccatgaag tttcagagct
420acatccaatg aggacggcag gtagcgaggt cctatccgaa gctcttcggc gtcatgaaca
480gccaatagga gttcgtgtag aagcgagtct gctcaacagc ttgttatttg gtggattgtg
540gcagtaaatc ggggcgagtg gggaaccggg cgcaggaact gcagccgcgg ttgggagtgg
600tgctgcccgg acgggggccc acggaggtca gaggggagga ggactctgga gctgacagcg
660cgcacttnac ccgcanttgg taggtggggg agaggggaat cngggggatn ctgaatggac
720aaancggnan cggcagcaan tgntgntgcc cgggtncccg tgcaantnga aacntttggn
780gtggggaang ggattctagg caanggnccc gcnancccna aaaaaggc
828122842DNACercopithecus aethiopsmisc_feature(1)..(842)n is a, g, c, or
t 122ttggggancc tagcttgcca antctacagg tggggtcttt caccttcttg ccagaaacat
60aaaatgcgat ggagctacgg cgaccgctgc cgagacaaaa tggcgccgag aacctggttt
120agcgcaggcg ccttggaaag accctgcccc gcccccgtgc aagcccctgg ctgcaattct
180gggttccgtt tccatgggac actccgccgc caatcctcgt gccgaactgc tcttcctgac
240ccctcaattc accaatcagt gcccagtcaa gcacatccgg agtcgtctct accaatcatt
300tctcaagact tgcttactca ataaccaact ctccaataac gttggtcttc ggaaaaagcc
360aatcataagt ggaagatgtc ctacctgctg tttttcgcac caatccatga agtttcagag
420ctacatccaa tgaggacggc aggtagcgag gtcctatccg aagctcttcg gcgtcatgaa
480cagccaatag gagttcgtgt agaagcgagt ctgctcaaca gcttgttatt tggtggattg
540tggcagtaaa tcggggcgag tggggaaccg ggcgcaggaa ctgcagccgc ggttgggagt
600ggtgctgccc ggacgggggc cccacggagg tcagagggga ggaggactct ggagctgaca
660gcgcgcactt cacccgcagt tggtaggtgg gggagagggg aatcgggggn annctgaatg
720gacaaancgg cacgggnagc aantgntgnt gcccnggggt cccggngcaa ttggaanctt
780ttggaggtgg gggnanggna ttctagccaa ngggcccnnc nagcccaaaa aaangggncc
840nc
842123815DNACercopithecus aethiopsmisc_feature(1)..(815)n is a, g, c, or
t 123ttgggnaacc gagcggntaa cnttttcaca cagaaantcc caggctccat gcctgaatag
60ctgggactac aggcacacag aatcatgccc atctaccttt ttattttttg tagagaagag
120gtctcactat gatgcccagg ttggtctcaa acacctgtac tcaagagatc ttcccacctt
180ggcctcccaa agtgccagct ttacaaatgt gagccactgt gggtggccat gaactcttcc
240aatgaccctt tttcaaaaaa atatttcaac tattcaatgt gagccaagga tgtgccagac
300atttgctaga tgctatgaat aaaatatgac aaagattcag tctttgtccc catggacttt
360atagtctagt agtagatgag actcataagt aatatctagc caaaaataaa aattactgta
420ttatgggaga ataagaatat ggtactaatt tcttcagtgc caatgtatat cttttcatgt
480tcttgttcct tggattctca caacaattga tgaaaaatgt aacactggat ttgagtttgt
540agtcttattt tccaacatga tgaagttgtt attaagtgtg agatgatcaa gggagactca
600ggaagcagtg ggtaacctca gctaaaagca aacagatagt atattggaag atgaggtaaa
660caaagagagc aaagctttat gaatctgggc taaaantcag ctataagtnt tcgcanatcc
720angagaactt tncaacagnt tncaattgaa ancctttnag tttttaaann cctntttttn
780caaantgncn aaannnttaa caggnttgna atncc
815124823DNACercopithecus aethiopsmisc_feature(1)..(823)n is a, g, c, or
t 124ggnnttgcga gcggntaaca atttcacaca gaattcaaac tccagcttta ctaccctgtg
60accttgggca ggtcacttca catttctcag gctggtttcc agtctggctg cctttgggga
120ggggacctgg gtttgcagga agaaaacttc cttacactga ataattattg ccttgttaga
180aattttttac catgtgcaca tattactttt cctaaatatt tgcacccaat ttaattgatt
240taattgggga aaaatgaaca taggaaaaat aatgacctct tcctcagggt tattaaaagg
300tttcaaaata aagtatgtag ctagtaaagg tgcatagtat atgcttaatc aatagagtgg
360tgacagggtg gagggaggtg ggaggcaggc tcattcctgc cctggggccc agaggagaac
420atgtggtaca gaagtcccag cctacagcca gctcctagca ttaaggcagg tgcccattca
480gctagagcct cangggggtg cnagttgagg gagctgctcc tancctggnc cccatgccct
540ttnctttgtg gtggancctt aagaagcccn ttttcctgan naanncctgg gnttananaa
600ttcacctttg ncaattncca agnncccggn gnaattntcc ntnttgggng aaacccnttn
660nntttaaggg tgnntnttng ggattngnac cnnnnttttg gggcncnccc ngntttttnn
720tttttnttnn aaannccnnn aaaanaaaaa aaaaanntnn gngnccnnaa anncccccnn
780ggggggggaa aaaaaaaaaa antttttccc ccccccccnc cnc
823125691DNACercopithecus aethiops 125cctaatccac caacccccaa ctactatagt
gggagcctga ggtcacagca tggccccccc 60gtgttgtgag aaaaatctcc acaggattct
cccactgttt cctaagtgtg ctctgggatc 120ctccgtgact agtgtggaat tttgagccag
tgatttctcc ccacaggttt caattaaatc 180atctgtcaaa tgaggatgac cacatcttct
ttacctcacc actgagctgt gaaatgaacc 240agaggcctta ccttttcccc ctgaactccc
agtcatccct ggaacaccaa tttgaacatc 300atctcccact ttcccagcca gttagcagct
ctgtcctctg gatttcaaag agaaatgtct 360ctagcatcat ccctgtttcc ttgcactgtc
ctactttctt tttcccccca gagccaggaa 420tgtcttaaac agaatgagat gctcccaagg
ggccaccaac tcacaattag gagttcaata 480aatactgact taagagtgaa tgaacgatcc
ccgtgtcttt gtccacattt gtacatgctt 540acatgattct gcaaagaatc taaatttctc
tttacattaa caaacaaggg ggctgggcat 600ggtggctcat gactgtaatc tcagcatttt
tgttaaccag gacagtcctg atgaaataac 660tgggaaagtt cctttttggg gggtggggtg g
691126748DNACercopithecus aethiops
126ccatcgcctt actattgcct tcttgacgag ttcttctgag cgggactctg gggttcgaaa
60tgagctagcc cttaagtaac gccattttgc aaggcatgga aaaatacata actgagaata
120gaaaagttca gatcgaggtc aggaacagat ggaacagggt cgaccggtcg accggtcgac
180cctagagaac catcagatgt ttccagggtg ccccaaggac ctgaaatgac cctgtgcctt
240atttgaacta accaatcagt tcgcttctcg cttctgttcg cgcgcttctg ctccccgagc
300tcaataaaag agcccacaac ccctcactcg gggcgccagt cctccgattg actgagtcgc
360ccgggtaccc gtgtatccaa taaaccctct tgcagttgca tccgacttgt ggtctcgctg
420ttccttggga gggtctcctc tgagtgattg actacccgtc agcgggggtc tttcagcagg
480gcccggggcc acagaaggaa aacatctctg tggaatgtgg aaatgcagaa ctctactggg
540cccgtttaga aagcacagaa aagcatggaa gaaagggaga ggcgagaagc ctagaaaatt
600accctagatc ttaggtatgg atatatcgac ctaaaagaaa gaagatgggg caaagttaat
660gcaagcagag agtttatttg gggtcaagct tgaggattgc accccaggag catagattca
720agttgccctg aatttacact gattagca
748127708DNACercopithecus aethiops 127gccaaaccta cagggggggt tctttcactg
ccagtcagcg aaccgcgaag ccggcaggca 60cttcggcggt ctccagcctt tgcctgaaaa
gagctcggca agctagctag aggtcagacc 120ccaggaccca gtcgttttag ctcagggaaa
ggaagcgccg gacgccagcc tgcaagcttc 180actgcgcagc cgtggacacc gccccacgtc
gtagggccgt ggaccctgac aacgccggaa 240cccggcgtcc ggtgcgtgcg cttggcggac
cagaatggct aacgtaccgc catgccgcga 300ggcccacgta gaggcggaag ttgatgggac
ggacgcagat gggggaacct tgcctcgatg 360gcactttcct gtccgcgact ccgcccccgc
cagaggggct aggctccggg tttcaagatg 420gaggcgctga gtcgagctgg gcaggagatg
agcctggcgg ccctgaagca acacgaccct 480tacatcacca gcatcgcaga cctcacgggc
caggttgctc tgtacacctt ctgccccaag 540gccaaccagt gggtgagtgc cgcctggctc
tgaggacggc cgcccggccg ctgcggtctc 600ttaaaggggc cgtgcgtgtt gctgtggggt
gggggacaca gcaagagcca gggaggtgaa 660gacggggcca gggactgccg agaagccgac
cagaaccaga ggggttgt 708128741DNACercopithecus
aethiopsmisc_feature(1)..(741)n is a, g, c or t 128taacaatttt cacacagaaa
ttcaatccaa caaacaanta catattattt tctaagttgt 60aaagcctgta accgaatgag
ttaattagga agggtcaatt acaagaaagt gggaaattat 120gctagttgtt tttaaacaac
taacaaagct tcaagcaggg gctaacgaga atcagtgaac 180agactgaatg taacttttcg
gaccctctcc agtgcacgaa aagccagaaa gtactgagtc 240tgaggggaac attcagagat
gacatcacca gcatcatagg tggaacaaaa cacatttaca 300gggtctctct tgtttgtaca
aaggtcttcg gggatctagt gaacatggaa gcccttttcc 360taagtgcctt gaaatctttt
ccgaaactgt gtagttcgat taaagccgga cccaccgcac 420tcccccttcc aagaatcgaa
actaattgga ttttaagctt taaatccaaa tgacctctga 480gaaaggggct ctcatttacg
tctgccgggg gagaggagga gtgtttattt tatagacaat 540gtatatgcaa tttatctaat
aatccgcaaa gcctcaaaca caagctttca ggcactcttt 600tgaccccacc ggtctcataa
ctcccaatgt atctgcaaag aaggcaggtc gcccacgtcc 660ccaaacccga cgccaaggga
ctgatcctgc tccaatcctc cctcactggc ttttccttgg 720ggatgtgtnc agcccacttc t
741129694DNACercopithecus
aethiopsmisc_feature(1)..(694)n is a, g, c or t 129ccgccaacct acagggtggg
gttctttcac tgccagtaca gcgaaccgcg aagccggcag 60gcacttcggc ggtctccagc
ctttgcctga aaagagctcg gcaagctagc tagaggtcag 120accccaggac ccagtcgttt
tagctcaggg aaaggaagcg ccggacgcca gcctgcaagc 180ttcactgcgc agccgtggac
accgccccac gtcgtagggc cgtggaccct gacaacgccg 240gaacccggcg tccggtgcgt
gcgcttggcg gaccagaatg gctaacgtac cgccatgccg 300cgaggcccac gtagaggcgg
aagttgatgg gacggacgca gatgggggaa ccttgcctcg 360atggcacttt cctgtccgcg
actccgcccc cgccagaggg gctaggctcc gggtttcaag 420atggaggcgc tgagtcgagc
tgggcaggag atgagcctgg cggccctgaa gcaacacgac 480ccttacatca ccagcatcgc
agacctcacg ggccaggttg ctctgtacac cttctgcccc 540aaggccaacc agtgggtgag
tgccgcctgg ctctgaggac ggccgctccg gccgctgcgg 600tctcttaaag gggccgtgcg
tgttgctgtg gggtggggga cacagcaaga ggccagggga 660ggtgaagacg gggccaaggg
actgncgaaa agcc 694130678DNACercopithecus
aethiops 130ccctttactg ccagacagcg aaccgcgaag ccggcaggca cttcggcggt
ctccagcctt 60tgcctgaaaa gagctcggca agctagctag aggtcagacc ccaggaccca
gtcgttttag 120ctcagggaaa ggaagcgccg gacgccagcc tgcaagcttc actgcgcagc
cgtggacacc 180gccccacgtc gtagggccgt ggaccctgac aacgccggaa cccggcgtcc
ggtgcgtgcg 240cttggcggac cagaatggct aacgtaccgc catgccgcga ggcccacgta
gaggcggaag 300ttgatgggac ggacgcagat gggggaacct tgcctcgatg gcactttcct
gtccgcgact 360ccgcccccgc cagaggggct aggctccggg tttcaagatg gaggcgctga
gtcgagctgg 420gcaggagatg agcctggcgg ccctgaagca acacgaccct tacatcacca
gcatcgcaga 480cctcacgggc caggttgctc tgtacacctt ctgccccaag gccaaccagt
gggtgagtgc 540cgcctggctc tgaggacggc cgcccggccg ctgcggtctc ttaaaggggc
cgtgcgtgtt 600gctgtggggt gggggacaca gcaagaggcc agggaagttg aagacggggc
caagggaact 660ggccgaaaag ccaagcca
678131712DNACercopithecus aethiops 131cccgccagcc tacaggtggg
gtctttcact gccagtacag cgaaccgcga agccggcagg 60cacttcggac ggtctccagc
ctttgcctga aaagagctcg gcaagctagc tagaggtcag 120accccaggac ccagtcgttt
tagctcaggg aaaggaagcg ccggacgcca gcctgcaagc 180ttcactgcgc agccgtggac
accgccccac gtcgtcgggc cgtggaccct gacaacgccg 240gaacccggcg tccggtgcgt
gcgcttggcg gaccagaatg gctaacgtac cgccatgccg 300cgaggcccac gtagaggcgg
aagttgatgg gacggacgca gatgggggaa ccttgcctcg 360atggcacttt cctgtccgcg
actccgcccc cgccagaggg gctaggctcc gggtttcaag 420ttggaggcgc tgagtcgagc
tgggcaggag atgagcctgg cggccctgaa gcaacacgac 480ccttacatca ccagcatcgc
agacctcacg ggccaggttg ctctgtacac cttctgcccc 540aaggccaacc cagtgggtga
gtgccgcctg gctctgagga cagccgcccg gccgctgcgg 600tctcttaaag gggcccgtgc
gtgttgctgt gggggtgggg gaacacagca agaggccagg 660ggaggtgaag accggggcca
gggacctggc gaaaagcccg aaccagaagc cc 712132738DNACercopithecus
aethiopsmisc_feature(1)..(738)n is a, g, c or t 132gccagcctac aggggggggt
ctntcactgc acagtacagc gaaccgcgaa gccggcaggc 60acttcggcgg tctccagcct
ttgcctgaaa agagctcggc aagctagcta gaggtcagac 120cccaggaccc agtcgtttta
gctcagggaa aggaagcgcc ggacgccagc ctgcaagctt 180cactgcgcag ccgtggacac
cgccccacgt cgtagggccg tggaccctga caacgccgga 240acccggcgtc cggtgcgtgc
gcttggcgga ccagaatggc taacgtaccg ccatgccgcg 300aggcccacgt agaggcggaa
gttgatggga cggacgcaga tgggggaacc ttgcctcgat 360ggcactttcc tgtccgcgac
tccgcccccg ccagaggggc taggctccgg gtttcaagat 420ggaggcgctg agtcgagctg
ggcaggagat gagcctggcg gccctgaagc aacacgaccc 480ttacatcacc agcatcgcag
acctcacggg ccaggttgct ctgtacacct tctgccccaa 540ggccaaccag tgggtgagtg
ccgcctggct ctgaggacgg ccgcccggcc gctgcggtct 600cttaaagggg ccgtgcgtgt
ttgctgtggg gtgggggaca cagcaagagg ccagggaggt 660gaagacnggg gccagggnac
tggcgaagag ccgagccaaa gccagagggg tgtcgggtcc 720acctgggaat tgggggaa
738133757DNACercopithecus
aethiops 133cgccaaacct acaggggggg tctttcactg ccagacagcg aaccgcgaag
ccggcaggca 60cttcggcggt ctccagcctt tgcctgaaaa gagctcggca agctagctag
aggtcagacc 120ccaggaccca gtcgttttag ctcagggaaa ggaagcgccg gacgccagcc
tgcaagcttc 180actgcgcagc cgtggacacc gccccacgtc gtagggccgt ggaccctgac
aacgccggaa 240cccggcgtcc ggtgcgtgcg cttggcggac cagaatggct aacgtaccgc
catgccgcga 300ggcccacgta gaggcggaag ttgatgggac ggacgcagat gggggaacct
tgcctcgatg 360gcactttcct gtccgcgact ccgcccccgc cagaggggct aggctccggg
tttcaagatg 420gaggcgctga gtcgagctgg gcaggagatg agcctggcgg ccctgaagca
acacgaccct 480tacatcacca gcatcgcaga cctcacgggc caggttgctc tgtacacctt
ctgccccaag 540gccaaccagt gggtgagtgc cgcctggctc tgaggacggc cgcccggccg
ctgcggtctc 600ttaaaggggc cgtgcgtgtt gctgtggggt gggggacaca gcaagaggcc
aggggaggtg 660aagacggggg ccaggggact ggcgaagagc ccgagccaga gccagagggg
tgtcgggtcc 720acctgggatt ggggggatag gaagtgagaa gaagtgg
757134668DNACercopithecus aethiopsmisc_feature(1)..(668)n is
a, g, c or t 134ccagcctaca ggggggggtt ctttcactgc cagtacagcg aaccgcgaag
ccggcaggca 60cttcggcggt ctccagcctt tgcctgaaaa gagctcggca agctagctag
aggtcagacc 120ccaggaccca gtcgttttag ctcagggaaa ggaagcgccg gacgccagcc
tgcaagcttc 180actgcgcagc cgtggacacc gccccacgta gtagggccgt ggaccctgac
aacgccggaa 240cccggcgtcc ggtgcgtgcg cttggcggac cagaatggct aacgtaccgc
catgccgtga 300ggcccacgta gaggcggaag ttgatgggac ggacgcagat gggggaacct
tgcctcgatg 360gcactttcct gtccgcgact ccgcccccgc cagaggggct aggctccggg
tttcaagatg 420gaggcgctga gtcgagctgg gcaggagatg agcctggcgg ccctgaagca
acacgaccct 480tacatcacca gcatcgcaga cctcacgggc caggttgctc tgtacacctt
ctgccccaag 540gccaaccagt gggtgagtgc cgcctggctc tgaggacggc ccgcccggcc
gctgncggtc 600ntcttaaaag gggcccganc gtgtttgctg tgggggtggg gggacncaag
caagaaggcn 660cagggagg
668135752DNACercopithecus aethiopsmisc_feature(1)..(752)n is
a, g, c or t 135gcttgccaaa cctacagggg gggtctttca ctgccagaca gcgaaccgcg
aagccggcag 60gcacttcggc ggtctccagc ctttgcctga aaagagctcg gcaagctagc
tagaggtcag 120accccaggac ccagtcgttt tagctcaggg aaaggaagcg ccggacgcca
gcctgcaagc 180ttcactgcgc agccgtggac accgccccac gtcgtagggc cgtggaccct
gacaacgccg 240gaacccggcg tccggtgcgt gcgcttggcg gaccagaatg gctaacgtac
cgccatgccg 300cgaggcccac gtagaggcgg aagttgatgg gacggacgca gatgggggaa
ccttgcctcg 360atggcacttt cctgtccgcg actccgcccc cgccagaggg gctaggctcc
gggtttcaag 420atggaggcgc tgagtcgagc tgggcaggag atgagcctgg cggccctgaa
gcaacacgac 480ccttacatca ccagcatcgc agacctcacg ggccaggttg ctctgtacac
cttctgcccc 540aaggccaacc agtgggtgag tgccgcctgg ctctgaggac ggccgcccgg
ccgctgcggt 600ctcttaaagg ggccgtgcgt gttgctgtgg ggtgggggac acagccagga
ggccaaggga 660ggtgaagacn ggggccaggg actggcgaag agccgagcca ganccagagg
ggtgtcgggt 720tcacctggga ttgggggata ggagtgagag aa
752136739DNACercopithecus aethiopsmisc_feature(1)..(739)n is
a, g, c or t 136ctttcactgc cagnacagcg aaccgcgaag ccggcaggca cttcggcggt
ctccagcctt 60tgcctgaaaa gagctcggca agctagctag aggtcagacc ccaggaccca
gtcgttttag 120ctcagggaaa ggaagcgccg gacgccagcc tgcaagcttc actgcgcagc
cgtggacacc 180gccccacgtc gtagggccgt ggaccctgac aacgccggaa cccggcgtcc
ggtgcgtgcg 240cttggcggac cagaatggct aacgtaccgc catgccgcga ggcccacgta
gaggcggaag 300ttgatgggac ggacgcagat gggggaacct tgcctcgatg gcactttcct
gtccgcgact 360ccgcccccgc cagaggggct aggctccggg tttcaagatg gaggcgctga
gtcgagctgg 420gcaggagatg agcctggcgg ccctgaagca acacgaccct tacatcacca
gcatcgcaga 480cctcacgggc caggttgctc tgtacacctt ctgccccaag gccaaccagt
gggtgagtgc 540cgcctggctc tgaggacggc cgcccggccg ctgcggtctc ttaaaggggc
cgtgcgtgtt 600gctgtggggt gggggacaca gcaagaggcc agggaggtga agacggggcc
agggactggc 660gaagagccga gccagagcca gaggggtgtc gggtccacct gggattgggg
gataggggtg 720agagaagngg ctgganaat
739137707DNACercopithecus aethiopsmisc_feature(1)..(707)n is
a, g, c or t 137gccaaaccta caggtgggat ctttcactgc cagacagcga accgcgaagc
cggcaggcac 60ttcggcggtc tccagccttt gcctgaaaag agctcggcaa gctagnttag
aggtcagacc 120ccaggaccca gtcgttttag ctcagggaaa ggaagcgccg gacgccagcc
tgcaagcttc 180actgcgcagc cgtggacacc gccccacgtc gtagggccgt ggaccctgac
aacgccggaa 240cccggcgtcc ggtgcgtgcg cttggcggac cagaatggct aacgtaccgc
catgccgcga 300ggcccacgta gaggcggaag ttgatgggac ggacgcagat gggggaacct
tgcctcgatg 360gcactttcct gtccgcgact ccgcccccgc cagaggggct aggctccggg
tttcaagatg 420gaggcgctga gtcgagctgg gcaggagatg agcctggcgg ccctgaagca
acacgaccct 480tacatcacca gcatcgcaga cctcacgggc caggttgctc tgtacacctt
ctgccccaag 540gccaaccagt gggtgagtgc cgcctggctc tgaggacggc cgcccggccg
ctgcggtctc 600ttaaaggggc cgtgcgtgtt gctgtggggt gggggacaca gcaagaggcc
agggaggtga 660agacggggcc agggactggc gaagagccga gccagagcca gaggggt
707138818DNACercopithecus aethiopsmisc_feature(1)..(818)n is
a, g, c or t 138tcacacagaa ttcagnaaag cacagctgtc taggcgtttg gctcctgaca
aatggttgcc 60tgcccctcac ctcaccagcc tctccagaca cctctgcatc acacagcact
gatgaccgcc 120tcccagccca acacccactc tgcttactct gtgccgccag gctctgattg
tgtttgggag 180gtaaagtgct cagccccaag actggccaaa cttggccctc atcatcccat
tcctccttgc 240cagtggttta tctaggaata gatatggggc cctgttcagg tcagtgaaat
gtaagggtga 300gttagttcag gaatttctga gaaagattct cctctgtaat aaagcagaga
gtcacatgac 360tagaaaatct ttttgttgtt gttgttgttt taccaccacc ccttccttcc
tgctttggaa 420atcggtttat gatgtgatgc ctggagctgt ggcagctgtt ttatgaccat
gagagaaggc 480ttctccagtg tgctaggatt caggggagga aatacagaat gaatgtcagc
cctcgatgac 540actgccgagc cctaaaccaa ctctgagaat ttaagacttt ttgttctgta
agaaatgaga 600tttatttatt gtttaagact ctgttgggta ttctgttatc tgtggcccan
aatattttaa 660ataatataat ttctttttgc aataatacat ctcagatgga cattccccaa
agtctaagac 720tttgagagaa gtcatctctg aagagccaag cattcataat tagaaacttg
gccaggtgca 780gtggctcacg cctgtgatcc cagcactttg ggaggcca
818139581DNACercopithecus aethiopsmisc_feature(1)..(581)n is
a, g, c or t 139cacacaaatt agnncaggtc atcctcctgg tggttcctgt accagtcctc
gatcacctcc 60tcaaactctt ccaccagcac gtcgcactgt taatcgtaac acctcacgtt
ggcaaagccc 120cagcacctta ctcactccta gaggagctca gctaagcctt gcaacccact
gcaaggtagt 180ggcagtggtt cacctaagga aactgaggct agagaggtga aatgacgtga
ccaaagccac 240cctggcctgg gtggccctcc tcagagcaga cccaatcccc accggcccct
cactgggcac 300agcaaccctt ccaagggctg aagggcctgt acctgcttct tgaggtcagc
cacctctgca 360gaagtctcgt tccacagctc ataggggatg tccatcacca ccttgacccc
tttgtgtacc 420aggttgtgta atgtctcaaa ggtctctgac atgccctgga agaagcgacc
agacatggga 480ggcagagctc ccttctctcc ctcctaccct cctctcccag tggggcctat
gaactcagct 540gtaagaccaa tgcccaatgc cctctgagga tcctcaaacc t
581140630DNACercopithecus aethiops 140tcacacagaa ttccatgttc
agtaaccagg tgctacaaat gcagttcaag gctctaggtc 60atgacaatgt cacagatatc
tcaggtccag tcaccaaggc aacatgtggc ttgggtcttt 120ttctggtttc aagactgcat
ctgtattctc tcacctccct gggcccacag attccctaaa 180tcatagcttg gtctaagagc
aatgcttcaa attcaggtcc cttgtctcag gtgggtagac 240ttcctgtcac ccagccaccg
ccacctgatt ctggacctgg agccggcagg cccgtggctt 300cagcccgact cactcttttg
tattctgttg cttactatca tctttttttt ttttggtctt 360gaactccgca gtgtcatttt
ttttttctag tttatccatc tttgccatgt gtttggggaa 420gaatggcaat gcgaaagtgt
gaacttccag tcccggctta ttagaagccc acagctgttt 480taaaaaaaat ctaccttgct
atcctttccc ttttctgtga cacacaagtg actgttaatt 540agtacctagg ccatgggctg
tcatgcttaa aaactgaatg gaattttttg ttcttttagc 600aatgttagga tgactggctg
attataaaaa 630141737DNACercopithecus
aethiopsmisc_feature(1)..(737)n is a, g, c or t 141acacagaatt cttacttaat
acatataaac agaacatttc taggtcagtg aacaaaaata 60taacctgaat cataaaaaca
gagttataac tcctccatca atttccagac atcagccagt 120ttacaaatcc agaacccctt
aaatgaagaa caagcttgat gcccttgagg aagggcccta 180gtacactgcc caaaatctgt
acatttaatt ttcctcctaa tcttcccaaa agggacatat 240gtccttttac cagtgaaact
gctcatttgg gtaattgaaa ataatcaaat caggtactac 300tggaccctgg ctacgaactg
atgcaaattc caggagacct aacatgccat ggtggtccac 360aaagacagtg cttatgggaa
tcaggtgatc catggagttt taagttgggt ccaactcaca 420gtgggtccac attgtccctc
atgtaccctg tagttatgta ctcagttctg gaatgcatat 480tttgaataaa tatactcatg
ctgacagaat ctccataatg gttccctgac ctgtaaagtg 540aggtgcatta tggtgggtaa
tggcaaatgg aagccagtag aaacacctct atctaggaaa 600aatagtaaag caaatgcaat
attttcatct ccgtagggat tgcagacatt agttgccacc 660atcaagggct tgaaaaatga
ccagggggtg attcccacca acattctnca ttcagctttg 720tctattnggg ccttgcc
737142768DNACercopithecus
aethiops 142tttcacacag aattcagtgg atgctatgaa acatatcttc actgttcgtg
tttgtctctt 60tctgaatcca caagtgatgg acacatgaat ctactactac tgttctcttt
tcttcttttt 120ccgtctttct ctcccttccc acccctagtt cctgacgttt gcctactcta
tcatgtctgc 180tgaggtcagg aatattcatt tatcttcatg ctcaaggtaa gtgaagccat
taatgctgaa 240agtgttgcat accactctgc atcctcatct gtctgagaca cattcaacca
ctaggtcctc 300agctgcttca ctgctgcctg atgttctttg aagtccagta taagagagaa
cattctattt 360tgctaaaact aaaagactac cctttatctt tgctgagaat atgtaaagaa
aaggggaatg 420actagatcag aaggcttatt ctgaggtata tagtaatgtt aatttttaaa
taattgttag 480gtgttcttct tcattaggta ttcaccttca gttttccaag actatggaaa
gcaccattgg 540tgcatgtagt taacagcagc ttgactcaga cgtagaactg cagccaggac
ccatctgttc 600cccattactc cctgctgcca gttttgcaac cagaacctag gagtgattta
tcccatcctc 660aattttgctc aggactcagc agaagaagga tcctgggaca caagactttt
cagtggcttc 720aaacttggga gagttctttg gcaatgcaca ggtttgacct atgaactg
768143450DNACercopithecus aethiopsmisc_feature(1)..(450)n is
a, g, c or t 143gcctgtgaaa ccatctggnc ctggactttt tttggttggn aggctatcaa
cttattgcct 60caatttcaga gcctactatt ggtctattca gggatctcaa ctncttcctg
gctttagtct 120tggaagagtg taagtgtcca ggaaatctat ccatcttctt ctagattttc
cagtttattn 180cgcgcagagg cgttcacagc agcctctgat ggtagttcga atttctgagg
ggncggcggn 240gatatcccct ttatcattnt naatngcgnc gatnagacnc ttctctcttn
tcttctttat 300aagcactcng ctagccggcc ngccaatntc gnngangctt ntcaaaaaac
caactcctgg 360attcatcgat tncnntggag ggtctntttg ngtctctatc tccttcagtn
actgcnctga 420tcttagnata tttcntgccn tctgctagct
450144729DNACercopithecus aethiopsmisc_feature(1)..(729)n is
a, g, c or t 144cacacagaat tacccttttc gccttccaag gggaaaccag gccactttgc
tcttcttggg 60gaaggaggat aattgtccag tgctgggagg tgacagcagc tactgccagc
acgaggtggg 120gcccctgcag tgtggttcct caggtctgag aggggttccc tctgccttcc
tccctcctgc 180tcccctttcc tctttcctct acctgttttt tccttctctc acatctctcc
tgcttcccca 240caatccctga catttactgc aggctcccga agagccatga cactttatac
cctcaacctc 300atttaattct caggaaaccc cacaaggccg tgcaattctc accccaggta
ccaagtgagc 360cagttcaggt gcacagagac tgccccttgc ccagagatcc tagcacgagg
gctctgtact 420ggttagggtc tccagagaaa cagctccaat agaatgtgca gatgctgggt
gcagtggctc 480acccctgtaa tcccagcact ttgggaggcc gaggcgggcg gatcatgagg
tcaggagatc 540gagaccatcc tggctaacac ggtgaaaccc catctctact aaaaatacaa
aaacattagc 600cgggccgtgg tggcgggncg cctgtagtcc cagctacttg ggaggctgag
ggcaggagaa 660tggcatgaag ccganaggca nagcttgcag tgagccaaga tcacatggca
ctccaacctg 720ggcgacaaa
729145755DNACercopithecus aethiopsmisc_feature(1)..(755)n is
a, g, c or t 145aacaattttc acacagaatt acctggtctc aaagtgtatc ctccatgctt
cggcctccca 60aagtattgtg attacaggag tgacccaccc tgcccggccc tctagcttat
ggtggaagct 120taaataatca gttttagaca tttcttcttc ctttttttcc caagaaacag
ggtcttgctc 180tgccacccac gctggaatga agtggtgcaa tcatagctga ttgcaacctc
aaactcctta 240actcaatcaa tcctcccacc tcagcctttc aaatagctgg gactacagtg
cgtaagccac 300cgcacctggc ctcttctttc taatataagt atttaatatt ataaaatttc
ctctaagatc 360taaacactgc tttagctgca actcacaaat tttgatatgt tgtattttta
tttatatccc 420attaaaaata cagtattagt tcccgtgtga tttcttcttt gacccatggc
ttagaagtgt 480gttgtttagt ttccaaattt gggggcattt tccagatatc tttctcttat
ttatttgtaa 540tttaattctg ttgtggtcga ggagcacgtt ctgtttgctt acaatcctcg
taaatttatt 600atgacttgtt ttatggccca gcatagggtc tgtttggcga gtgttccatg
tgcatctgaa 660aagaatgtgt attctgtagt tgtgcagggt atttttaaaa ttttattctt
ttcactgana 720caaaatagct gtncatattt agagggtaca tgcga
755146795DNACercopithecus aethiops 146ctaccagtat atacaaagaa
aagctcgtac cattcatgct gaaactactc caaaaagttg 60aggagaagga aatcctccct
agcttattct acaaagctag catcacactg ctaccaaaac 120ctgacagagt cacaacaaca
aaaatttcag acatatattc ttgatgaaca ttgatgcaaa 180gtagtcaaca aaatacttgc
aaaccaaatt cagcagcaca tcaaaaagct tatccatcat 240gatcaagtag gctttatccc
tgggatgcaa ggttggttca acatctgcaa atcaataaat 300gtgattcatc acataaatac
cactaaagac aaaaaaacca catgattatc tcaacagatg 360cagaaaaggc ttttgataaa
atccaatacc ccttcatgtt aaaaactctc aataaactag 420gtattgaagg aacatacctc
aaagtaataa gaaccaccta taaaaaaccc acagccaaca 480tcatattgaa tgggcaaaag
ctggaagcaa tccccttgaa aactggagga agacaagaat 540accctttctt accactccta
ttcaacataa tattggaagt cctggccagg acaagcaggc 600aagagaaaga aagaaaggca
tcccaatagg aagaaaggga agtcaaacta tccctgtttg 660cagacaaaat gatcctatag
ctagaaaccc catagtctca gcccaaagct tttaagctga 720taaacacttt cagcaagcct
cagcatacaa aatcatgtgc aaaagtcagt acattttgta 780caccaccaac agtca
795147704DNACercopithecus
aethiopsmisc_feature(1)..(704)n is a, g, c or t 147gcatcctccc tcctcggcct
gggcgtgggc tcgcaaaacg ctgggattcc cggtattaca 60ggcgggcgcg ccacgccagg
agcaaacact tcctgcttta aaaattcagt gttgtgattg 120gctgccattc agcattatgc
taattaagca tgcctgtttt ttttaagctt cttaaaacaa 180ttttttaaaa ttccgtttcc
acctaaaacg ttaaaatttg tcaagtgata atattcgaga 240agatgttgtt gccaaactat
ttttctattt gtttcctaat ggcatcggaa atagcgaaag 300tatctcgcca ttagttaaaa
gttggcagca gatgtagacc ccgcagaggc tgcgagtggg 360ctgttaagac tatactttca
gggatcattt ctatagtttg ttactagaga agttctctct 420gaacgtgtag agcaccgaaa
accacgagga agagacgtag cgttttctcc tgagcgtgaa 480gcgggcgttt ggtgttgctt
cgctgcaact gccatcagcc attgatgatc gttcttctct 540ccgctttgga gagnaagagg
gagagaacgc ggtctgagtg gtttttcttt tttgcgnggt 600tagaacgaca gactgtacag
cgaccgtntc ccggcttgnc tntgtgcttg nntgnccncc 660ngaggccnaa gngagttgcc
ttattttgtt tcacnanccg ntgt 704148650DNACercopithecus
aethiopsmisc_feature(1)..(650)n is a, g, c or t 148atcgccttct atcgccttct
tgacgagttc ttctgagcgg gactctgggg ttcgaaatga 60gctagccctt aagtaacgcc
attttgcaag gcatggaaaa atacataact gagaatagaa 120aagttcagat cgaggtcagg
aacagatgga acagggtcga ccggtcgacc ggtcgaccct 180agagaaccat cagatgtttc
cagggtgccc caaggacctg aaatgaccct gtgccttatt 240tgaactaacc aatcagttcg
cttctcgctt ctgttcgcgc gcttctgctc cccgagctca 300ataaaagagc ccacaacccc
tcactcgggg cgccagtcct ccgattgact gagtcgcccg 360ggtacccgtg tatccaataa
accctcttgc agttgcatcc gacttgtggt ctcgctgttc 420cttgggaggg tctcctctga
gtgattgact acccgtcagc gggggtcttt cagttaagac 480tatactttca gggatcattt
ctatagtttg ttactagaga agtttctctg aacgtgtaga 540gcaccgaaaa ccacgaggaa
gagacgtagc gttttctcct gagcgtgaag cgggcgtttg 600gtgttgcttc gctgcactgc
catcanccat tgatgatcgt tttntntccg 650149671DNACercopithecus
aethiopsmisc_feature(1)..(671)n is a, g, c or t 149aactttaact aatggcgaga
taccttcgct attgccgatg ccattaggaa acaaatagaa 60aaatagtctg gcaacaacat
cttctcgaat attatcactc gacaaattat aacgttttag 120gtggaaacgg aactttaaaa
aattgtttta agaagcggaa aaaaaacagg catgcataat 180tagcataatg ctgaatggca
gccaatcaca aactgaatct ccaaagcagg aagtgtttgc 240tcctggcgtg gcgcgcccgc
ctgtaatccg ggaatcccag cgtttagcga gcccacgccc 300aggccgagga gggaggatcc
tttgttccac gagatcgaca ccagcctagg caatatagca 360gaatcctggt ggtgacggaa
atgccctatc ttgagcttat caatgccaaa accccggtca 420tataacttta ttggatatca
gtggggaaaa ctgagtaaaa ggtgcaaatg tataactcag 480tataaacccc aagaacgaaa
cgcaaaacct accattctct gaaagaaatg ttttgtacat 540atatttacac agaaacacat
acatcatgat caaaaaatga catcattcgt aaaaaaaaat 600aacaaaaagt gtaaaagaac
ccatcgcccg gaaaggaagg gccctgtgag accggatccc 660caaaaccaaa c
671150704DNACercopithecus
aethiopsmisc_feature(1)..(704)n is a, g, c or t 150tcattaacag cccactcgca
gcctctgcgg ggtctacatc tgctgccaac ttttaactaa 60tggcgagata ctttcgctat
ttccgatgcc attaggaaac aaatagaaaa atagtttggc 120aacaacatct tctcgaatat
tatcacttga caaattttaa cgttttaggt ggaaacggaa 180ttttaaaaaa ttgttttaag
aagcttaaaa aaaacaggca tgcttaatta gcataatgct 240gaatggcagc caatcacaaa
ctgaattttt aaagcaggaa gtgtttgctc ctggcgtggc 300gcgcccgcct gtaatccggg
aatcccagcg ttttgcgagc ccacgcccag gccgaggagg 360gaggatcctt tgttccacga
gttcgacacc agcctaggca atatagcaga attctgtgtg 420aaattgttat ccgctcacaa
ttccacacaa catgagcgtc agaccccgaa gaaaagatca 480aaggatcttc ttgagatcct
ttttttctgc gcgtaatctg ctgcttgcaa acaaaaaaac 540caccgctacc agcggtggtt
tgtttgccgg atcaagagct accaactctt tttccgaagg 600taactggctt cagcagagcg
cagataccaa atactgtcct tctagtgtag ccgtagttag 660gcccnccact tcaagaactc
tgtagcaccg cctacatacc tcga 704151705DNACercopithecus
aethiops 151gctatattgc ctaggctggt gtcgaactcg tggtaacaaa ggatcctccc
tcctcggcct 60gggcgtgggc tcgcaaaacg ctgggattcc cggattacag gcgggcgcgc
cacgccagga 120gcaaacactt cctgctttaa aaattcagtt tgtgattggc tgccattcag
cattatgcta 180attaagcatg cctgtttttt ttaagcttct taaaacaatt ttttaaaatt
ccgtttccac 240ctaaaacgtt aaaatttgtc aagtgataat attcgagaag atgttgttgc
caaactattt 300ttctatttgt ttcctaatgg catcggaaat agcgaaagta tctcgccatt
agttaaaagt 360tggcagcaga tgtagacccc gcagaggctg cgagtgggct gttaatgaaa
gaccccacct 420gtaggtttgg caagctagct gaggatcgtt tcgcatgatt gaacaagatg
gattgcacgc 480tggttctccg gccgcttggg tggagaggct attcggctat gactgggcac
aacagacaat 540cggctgctct gatgccgccg tgttccggct gtcagcgcag gggcgcccgg
ttctttttgt 600caagaccgac ctgtccggtg ccctgaatga actgcaggac gaggcagcgc
ggctatcgtg 660gctggccacg acgggcgttc cttgcgcacc tgtgctcgac gttgt
705152673DNACercopithecus aethiops 152tttcattaac agcccactcg
cagcctctgc ggggtctaca tctgctgcca acttttaact 60aatggcgaga tactttcgct
atttccgatg ccattaggaa acaaatagaa aaatagtttg 120gcaacaacat cttctcgaat
attatcactt gacaaatttt aacgttttag gtggaaacgg 180aattttaaaa aattgtttta
agaagcttaa aaaaaacagg catgcttaat tagcataatg 240ctgaatggca gccaatcaca
aactgaattt ttaaagcagg aagtgtttgc tcctggcgtg 300gcgcgcccgc ctgtaatccg
ggaatcccag cgttttgcga gcccacgccc aggccgagga 360gggaggatcc tttgttccac
gagttcgaca ccagcctagg caatatagca gaattcatct 420cacagagtta catctttccc
ttcaagaagc ctttcgctaa ggctgttctt gtggaattgg 480caaagggata tttggaagcc
catagagggc tatggtgaaa aaggaaatat cttccgttca 540aaactggaaa gaagctttct
gagaaactgc tctgtgttcc tctgaattct ggaagaaaac 600aaacacatca ttcttgtctc
caagagctta aatttctgtt tgggcaattt atttataaaa 660acacaactta gcc
673153709DNACercopithecus
aethiopsmisc_feature(1)..(709)n is a, g, c or t 153tttcattaac agcccactcg
cagcctctgc ggggtctaca tctgctgcca acttttaact 60aatggcgaga tactttcgct
atttccgatg ccattaggaa acaaatagaa aaatagtttg 120gcaacaacat cttctcgaat
attatcactt gacaaatttt aacgttttag gtggaaacgg 180aattntaaaa aaagttttta
agaagcttaa aaaaaacagg catgcttaat tagcataatg 240ctgaatggca gccaatcaca
aactgaattt ttaaagcagg aagtgtttgc tcctggcgtg 300gcgcgcccgc ctgtaatccg
ggaatcccag cgttttgcga gcccacgccc aggccgagga 360gggaggatcc tttgttccac
gagttcgaca ccagcctagg caatatagca gaattctgtg 420tgaaattgtt atccgctcac
aattccacac aacatgagcg tcagaccccg aagaaaagat 480caaaggatct tcttgagatc
cttttttttc tgcgcgtaat ctgctgcttg caaaacaaaa 540aaaccaccgc taccagcggt
ggtttgtttg cncgggatca agagtctacc aacctctttt 600ttacgaaagg tnactgggct
tcaggcagga gccgcanatt nccaaaataa ttggnccctt 660ccaagnggnn ancccgcnag
gnttagggcc cncccaactt tcnaaggac 709154574DNACercopithecus
aethiopsmisc_feature(1)..(574)n is a, g, c or t 154cctcggcctg ggcgtgggct
cgcaaaacgc tgggattccc ggattacagg cgggcgcgcc 60acgccaggag caaacacttc
ctgctttaaa aattcagttt gtgattggct gccattcagc 120attatgctaa tnaagcatgc
ctgttttttt taagcttctt aaaacaattt tttaaaattc 180cgttaccacc taaaacgtta
aaatttgtca agtgataata ttcgagaaga tgttgttgcc 240aaactatttt tctatttgnt
tcctaatggc atcggaaata gcgaaagtat ctcgccatta 300gttaaaagtt ggcagcagat
gtagaccccg cagaggctgc gagtgggctg ttaatgaaag 360accccacctg taggtttggc
aagcatagct gaggatcgtt tcgcatgntt gaacaagatg 420gattgcacgc tggntctccg
gccgctngng tggagaggct attcggntat gactgggcac 480aacagacaaa tcgggctgnt
ctgatgccgc cgtgttccgg ntgtaagcgc aggggcgccc 540cngtttcttt tttgnaaaga
ccganctgta acgg 574155794DNACercopithecus
aethiopsmisc_feature(1)..(794)n is a, g, c or t 155actccggaga tatgaggcct
agctccatcc ttcttttctt atcactcagt cattcaatct 60ttgcttggaa tacatgaact
aataatttcc aatattacct gacatggatc cactttaggg 120aagacacaag atatgaaaga
aaggataaag tctgaaagtt agaagtaaca caactacaga 180aaatagatta atgtggattg
ttatagccat tcatacaatg acatcctcaa cgtcaaaacc 240tttttgtact ctttacagat
tccacatcca agcagaattc tatttaatgt gctttctaac 300aatcagattc ctgacaaatg
tgttcataaa gtaataaaag cagcaaaatc ttaaatgttt 360tatactaaca tagtagacaa
aatacaaata ctctgaacac taatatcaca gaaaccctta 420aaaaaaagat tgaggggagg
taataacata cctaatacaa atagaaataa ggaggaacct 480ttgaggtttg ctatgctttg
aacgtgtccc caaggttcac atgttggaaa cttaatccct 540gaagcaacag tgatgagaag
tgggaccttt aagaggtgag taggtcacga gggctctgct 600ctgccacatg aatggattaa
tgctattacc agaggagtgg ggaatgggtt ccagatagaa 660gaccgagttt ggcctcctcc
ttatntntcg ctctctngcc ttccgccttc taccatggga 720tgatacagca ggaagaccct
agataccaca ccttgatatg gacttccngt cccnanacct 780tgantaaata ccag
794156831DNACercopithecus
aethiopsmisc_feature(1)..(831)n is a, g, c or t 156cgcatcgcct tctatcgcct
tcttgacgag ttcttctgag cgggactctg gggttcgaaa 60tgagctagcc cttaagtaac
gccattttgc aaggcatgga aaaatacata actgagaata 120gaaaagttca gatcgaggtc
aggaacagat ggaacagggt cgaccggtcg accggtcgac 180cctagagaac catcatatgt
ttccagggtg ccccaaggac ctgaaatgac cctgtgcctt 240atttgaacta accaatcagt
tcgcttctcg cttctgttcg cgcgcttctg ctccccgagc 300tcaataaaag agcccacaac
ccctcactcg gggcgccagt cctccgattg actgagtcgc 360ccgggtaccc gtgtatccaa
taaaccctct tgcagttgca tccgacttgt ggtctcgctg 420ttccttggga gggtctcctc
tgagtgattg actacccgtc agcgggggtc tttcaaggtc 480aactgacttt aaacttgccg
tttgatttgt gactttagaa agtagagtta actatattta 540gcaatatgct taagcatgtg
catatcacct catgaaacgt gtgtgtgcat gagaaaagct 600gcctccagta catatacata
tgtatataaa cacacataca cacaagcata tatatgtatg 660tatttcttgn aggaccagtc
tcattgtata taatttcaag tgcaggttcc tgatctccan 720ggatgcgtaa aagactcact
gaagttngga agaaanttta nggctactat tntgttggng 780atcncaccct tcaagtttaa
atttgatntg attattctta cngnttgcng g 831157637DNACercopithecus
aethiopsmisc_feature(1)..(637)n is a, g, c or t 157caacctaaga aaaactcaca
gccactttta aagcagtaac acatgtataa agtatagttt 60ggatcctttt gtacacagct
cctgaaagag agaaattttt ttttcaccta ccgacagaca 120tattggaagg ctgctaatat
tctgactttt acggactgta ctccctttaa cctgggtaca 180taccataata ttctttcagt
tgnccacagc tatagatacc cctagcataa cacttcagga 240ttcagaagac gaatgtacct
ttctgtatct taacctctct actccacact tcccacctct 300gaaaaaacaa caggccaaat
tctcagaacc taaaaccaag tcagagtaaa cactgctaat 360acaatactga cacttacata
tttacctggc ataatctcta ggattccacc cacaacctaa 420cagatcctaa ctctctcata
gagngagaaa atctgctaaa atctgacaga agtccaaatg 480aatcctttca gatatatgta
gcttgctaca cactcagaaa gnnaagttct cggaacttga 540aagctctctg aaactnttac
cagntacaag angttncagc nnatcacact agcagcatgg 600ntaanggcaa accagagcag
ctaccggaan attaaag 637158656DNACercopithecus
aethiopsmisc_feature(1)..(656)n is a, g, c or t 158tccatacctt taaaattcaa
gaatgttgtg ttctaatggc agtttgaccg ttgagatatt 60aacataggaa catcatttag
cctcttaagc ttgaacatcc attaagcggg aaaaatagtg 120cttatttcct agaggtttgc
agacattggc taaccaatag ttntgattnt gctggaaagc 180aatgtgcaaa ttttcttaga
tgtgatcgct tcattttctc ttacatttta gattggcagc 240agccaaatgg gcgttccagc
ccctnatctc ctgcaagatt cttctcagtt tcataaatct 300ggtaattttt gagctctttt
cccaacaggg tgctgcagct caccaagtgg aatctacaac 360attttctgct accaggatag
cagcttgcca gcaggatata ctgaaattac tgggtttcag 420tatgatgttg gctggtacga
acntcaatca tncgaatcga catgcgccca gccattctca 480taatgaaatg tntccttctc
ctttcaacat gttccgcttt ccagcccccc atcctccntt 540tattatnttt tttctttcan
nnaaaagaag ctttnagnaa acacnnaaac ctcttactcc 600ctntagngaa aggaaaacnt
tctttccnnt nctncntccc ctttngannc ncccta 656159654DNACercopithecus
aethiopsmisc_feature(1)..(654)n is a, g, c or t 159cattttaatt tttatatagg
atggtattta tgaacatccc actaactatt ctgccgctga 60ttgatatttg gatgtgtaca
gtttgatgct attataaaat tcttctaaga acattcttgt 120acatgttcat tttgtttcgc
taggtcctag agtctaaggt atatatccag aagaggaata 180gctgggtatt atgatagaat
aatgacaaac tagtttctaa agtgattgta ccaattagtg 240tttccatagg agaaaagtgt
acagctactg gaaaaacagt ttggaatgat ctgaagtata 300agaatgttca tagcaacaga
atgtgtttct tgtattccaa atgttcacct acagttggtg 360tggtcagtat aagttgttgt
ttttgttttt attgtgtgtg tgtttttttt atcctttggg 420acagggcctc actttgttat
ccaggctaga gagcagtggt acaaacatga ctcactgcag 480ccttagcctc ccaggctcaa
gcagtcctcc tgcctcagcc tcctaagtac ctgggactac 540aggcatgtgc caccacacct
ggctaatttt tgtattttnt tgtagagaca gggtttcacc 600atgttngccc agtctggtct
agttttaaac aaagttgtng cctgnggaaa tgat 654160683DNACercopithecus
aethiops 160ttactgcatc tgcacacaaa aacccaccga agaaaaaaag tgtgaatgcc
atacaatttt 60tttcaatgca agtatggaac actgtacatc actgaaaaac agggggaaaa
aaaaaaagga 120aaaagaggag aaccattgaa gaaagcataa aatagcagct agctttctta
cgtgtgctgg 180aattgtgtct ttcgggttaa ccccaaattt tcctatgcta tacactcttc
tcacattttg 240gtcaatacta gcttctgaat tggaagaggc attatcaatt gctttaaaat
gttataccta 300aaataaagaa acactgagtt agactgtcac cactttgaat acccatcagg
agagtgtggc 360attgcatgcg aaaatgtatg tgttcctctt aggagatgaa gatcaagtca
gctaacagct 420gtcaacaaac ttctagtgta ggcaagaatt ttatggccaa gttgggcttt
cctttattcc 480ttactggaag aaagtattca gaaaatagca ttttagggga aaaaagtgtt
aagtaaacag 540aatcctttta agcacacaaa caaaagttga gcagtgtaaa ttttgaaact
tagtgccttt 600tagtatctga agcaaaatga taacaagtta taggattttt tctttatgaa
gaatgatgta 660agctcactta tgaaagaaga acc
683161811DNACercopithecus aethiopsmisc_feature(1)..(811)n is
a, g, c or t 161ctttcacgag aattctgtct caaaaaaaaa aaaaaagcca aagtcctcaa
aatggcctgc 60atggcactac attctctggc cctttatcag cactctgaca gctctctcct
ttgcttattt 120tgctcctcat tctagcctct ggatctttgc ccttgctgtt ccttacgctc
ttctcccagg 180gatctgaaag gctcacaccc tcacctcctt cagaggtttg ctaaaatgtc
ttctacccag 240tgaagccttc cccaaccacc acattaaaaa cacacaacca gcacccgttc
tctatcttcc 300ttcactttgc atttgtccat tgtgtaacat cacttacata cctttaattt
ttagtttatt 360aattcatact gcaaaacaac ttagtttnta ccatgtgcca ggcattgtcc
ctagttgctg 420acaatacagt tgaaaataaa atagacaaaa atcccatctt ttgaatcttt
tgaaccttac 480attgggagtg acaggcaaaa acgaggtaaa tcagtaaaat acgtgagaca
gaacgctaaa 540agaaaaaaaa gaggaaaggg ctgatttttg tgtctttccc tccanaatgc
aagctccctt 600gaggatacag atttgngtgt tttttaacta ctgnaatnct ccctgacaat
agcgccccag 660tnacatagta agggcatttc gannccaatt ttttaaaaat gaagaaaact
aggccagtta 720ccncagtttc ctggggccca attttcaact ttttagganc ntnaantacc
gatataaana 780aaattcggtt acagctaggg ctccgnatna a
811162757DNACercopithecus aethiopsmisc_feature(1)..(757)n is
a, g, c or t 162ctttcacgag aattctgtct caaaaaaaaa aaaaaagcca aagtcctcaa
aatggcctgc 60atggcactac attctctggc cctttatcag cactctgaca gctctctcct
ttgcttattt 120tgctcctcat tctagcctct ggatctttgc ccttgctgtt ccttacgctc
ttctcccagg 180gatctgaaag gctcacaccc tcacctcctt cagaggtttg ctaaaatgtc
ttctacccag 240tgaagccttc cccaaccacc acattaaaaa cacacaacca gcacccgttc
tctatcttcc 300ttcactttgc atttgtccat tgtgtaacat cacttacata cctttaattt
ttagtttatt 360aattcatact gcaaaacaac ttagttttta ccatgtgcca ggcattgtcc
ctagttgctg 420acaatacagt tgaaaataaa atagacaaaa atcccatctt ttgaatcttt
tgaaccttac 480attgggagtg acaggcaaaa acgaggtaaa tcagtaaaat acgtgagaca
gaacgctaaa 540agaaaaaaaa gaggaaaggg ctgatttttg tgtcttccct ccagaatgca
agctccttga 600ggatacagat ttgtgtgttt tttactactg tatctcctga caatagcgcc
cagtacatag 660taggcattcg atccaatttt aaaatgagat actaggcagt tactcagttt
tctgggcaca 720tttcaacttt tagacaataa taccgataag aaaanta
757163749DNACercopithecus aethiopsmisc_feature(1)..(749)n is
a, g, c or t 163ctttcacgag aattctgtct caaaaaaaaa aaaaaagcca aagtcctcaa
aatggcctgc 60atggcactac attctctggc cctttatcag cactctgaca gctctctcct
ttgcttattt 120tgctcctcat tctagcctct ggatctttgc ccttgctgtt ccttacgctc
ttctcccagg 180gatctgaaag gctcacaccc tcacctcctt cagaggtttg ctaaaatgtc
ttctacccag 240tgaagccttc cccaaccacc acattaaaaa cacacaacca gcacccgttc
tctatcttcc 300ttcactttgc atttgtccat tgtgtaacat cacttacata cctttaattt
ttagtttatt 360aattcatact gcaaaacaac ttagttttta ccatgtgcca ggcattgtcc
ctagttgctg 420acaatacagt tgaaaataaa atagacaaaa atcccatctt ttgaatcttt
tgaaccttac 480attgggagtg acaggcaaaa acgaggtaaa tcagtaaaat acgtgagaca
gaacgctaaa 540agaaaaaaaa gaggaaaggg ctgatttttg tgtcttccct ccagaatgca
agctccttga 600ggatacagat ttgggtgttt tntactactg natctcctga acaatagcgc
cccagtacnt 660aggtaggnca ttcgatccaa nttttnaaaa agaggancct agggccagtt
aactnaagtt 720ttctggggcc ccatttccaa acttttaga
749164741DNACercopithecus aethiopsmisc_feature(1)..(741)n is
a, g, c or t 164ctttcacgag attctgtctc aaaaaaaaaa aaaaagccaa agtcctcaaa
atggcctgca 60tggcactaca ttctctggcc ctttatcagc actctgacag ctctctcctt
tgcttatttt 120gctcctcatt ctagcctctg gatctttgcc cttgctgttc cttacgctct
tctcccaggg 180atctgaaagg ctcacaccct cacctccttc agaggtttgc taaaatgtct
tctacccagt 240gaagccttcc ccaaccacca cattaaaaac acacaaccag cacccgttct
ctatcttcct 300tcactttgca tttgtccatt gtgtaacatc acttacatac ctttaatttt
tagtttatta 360attcatactg caaaacaact tagtttttac catgtgccag gcattgtccc
tagttgctga 420caatacagtt gaaaataaaa tagacaaaaa tcccatcttt tgaatctttt
gaaccttaca 480ttgggagtga caggcaaaaa cgaggtaaat cagtaaaata cgtgagacag
aacgctaaaa 540gaaaaaaaaa gaggaaaggg ctgatttttg tgtcttccct nccagaatgc
aagctccttg 600aggatacaga attngtgtgt tttttnacta ctgnatctcc tgacaatagc
ncccagtaca 660tagtaggcat tcgatccaat tttnaaaaga ganactaggc angtactaag
tttntgggcc 720cattnnactt ttaagacaat a
741165727DNACercopithecus aethiopsmisc_feature(1)..(727)n is
a, g, c or t 165ctacgataca tgtaacattc tacgaacaac catggtgagt agaaccatct
ggattttcca 60tcactttcat ttaaaagact ctgttgatat tctaggtact gattccatat
atcagtatca 120acaaatttct caaccaaggg gataattggt ttatctgttt gcaattcatt
ccgtaattta 180gaaaggagag aaatagcttt cttttcagct tccacgcctt cctgcaaaaa
tacaagaaaa 240atcaattgtg tgtgtgtctg tgtctgtgtt tgtgtgtgcg tgtctatgca
attcctctag 300ggtaacatat ttttacagac ttaagaagaa aagaaaaatg ttcaaactac
attatacttc 360tttaaacatt acatttagaa ctcttaaact gaaaatcaaa aaacacacac
agatctcata 420tgaacataat catgccttat ctatctaagt tctggccttt ctgtgtcttc
ggtgatcatt 480actacagagg gaaaggaacc cctgacagat tttccatgtc tttcatgctt
ccatacacat 540tcttctttca ccattgacac cactagaaaa gaaactgtgg cctttctgag
gtttcttttg 600gtagctcaat tttttttttt aacttgtttt ccactgagtt ctagctaggt
gagagatgag 660atatgctgac atacaaggcg ctacaatata tctcacatga caggccantg
ggagtgggga 720naaatgt
727166713DNACercopithecus aethiopsmisc_feature(1)..(713)n is
a, g, c or t 166cacgagaatt ctgtctcaaa aaaaaaaaaa aagccaaagg tcctctaaaa
tggcctgcat 60ggcactacat tctctggccc tttatcagca ctctgacagc tctctccttt
gcttattttg 120ctcctcattc tagcctctgg atctttgccc ttgctgttcc ttacgctctt
ctcccaggga 180tctgaaaggc tcacaccctc acctccttca gaggtttgct aaaatgtctt
ctacccagtg 240aagccttccc caaccaccac attaaaaaca cacaaccagc acccgttctc
tatcttcctt 300cactttgcat ttgtccattg tgtaacatca cttacatacc tttaattttt
agtttattaa 360ttcatactgc aaaacaactt agtttttacc atgtgccagg cattgtccct
agttgctgac 420aatacagttg aaaataaaat agacaaaaat cccatctttt gaatcttttg
aaccttacat 480tgggagtgac aggcaaaaac gaggtaaaat cagtaaaata cgtgagacag
aacgctaaaa 540gaaaaaaaag aggaaagggc tgatttttgt gtcttcccct ccagaatgca
agctcccttg 600aggatacaga tttnggntgt ttttttacta ctgtatctcc tgacaanagg
cgcccagtaa 660cataggtang gcattcgatn ccaatttttn aaaatgagan actaggcagt
tac 713167714DNACercopithecus aethiopsmisc_feature(1)..(714)n
is a, g, c or t 167ctttcacgag aattctgtct caaaaaaaaa aaaaaagcca aagtcctcaa
aatggcctgc 60atggcactac attctctggc cctttatcag cactctgaca gctctctcct
ttgcttattt 120tgctcctcat tctagcctct ggatctttgc ccttgctgtt ccttacgctc
ttctcccagg 180gatctgaaag gctcacaccc tcacctcctt cagaggtttg ctaaaatgtc
ttctacccag 240tgaagccttc cccaaccacc acattaaaaa cacacaacca gcacccgttc
tctatcttcc 300ttcactttgc atttgtccat tgtgtaacat cacttacata cctttaattt
ttagtttatt 360aattcatact gcaaaacaac ttagttttta ccatgtgcca ggcattgtcc
ctagttgctg 420acaatacagt tgaaaataaa atagacaaaa atcccatctt ttgaatcttt
tgaaccttac 480attgggagtg acaggcaaaa acgaggtaaa tcagtaaaat acgtgagaca
gaacgctaaa 540agaaaaaaaa gaggaaaggg ctgatttttg tgtcttccct ccaaaatgca
agctccttga 600ggatacagat ttngtgtgtt ttttanttac tgtatctcct gacaatagcg
ccccagntcc 660atagtaaggc attcgatcca atttttaaaa atggagatac tagggcagtt
tact 714168792DNACercopithecus aethiopsmisc_feature(1)..(792)n
is a, g, c or t 168ctttcacgag attctgtctc aaaaaaaaaa aaaaagccaa agtcctcaaa
atggcctgca 60tggcactaca ttctctggcc ctttatcagc actctgacag ctctctcctt
tgcttatttt 120gctcctcatt ctagcctctg gatctttgcc cttgctgttc cttacgctct
tctcccaggg 180atctgaaagg ctcacaccct cacctccttc agaggtttgc taaaatgtct
tctacccagt 240gaagccttcc ccaaccacca cattaaaaac acacaaccag cacccgttct
ctatcttcct 300tcactttgca tttgtccatt gtgtaacatc acttacatac ctttaatttt
tagtttatta 360attcatactg caaaacaact tagtttttac catgtgccag gcattgtccc
tagttgctga 420caatacagtt gaaaataaaa tagacaaaaa tcccatcttt tgaatctttt
gaaccttaca 480ttgggagtga caggcaaaaa cgaggtaaat cagtaaaata cgtgagacag
aacgctaaaa 540gaaaaaaaag aggaaagggc tgatttttgt gtcttccctc cagaatgcaa
gctccttgag 600gatacagatt tgtgtgtttt ttactactgt atctcctgac aatagcgccc
agtacatagt 660aggcattcga tccaattttt aaaatgtgat actaggcagt tactcagttt
ctgggcacat 720ttnaactttt agacnataat accgattaaa aaaancggtt ncagctaggc
tacgatncaa 780gananaactg tn
792169691DNACercopithecus aethiopsmisc_feature(1)..(691)n is
a, g, c or t 169ctacgaacaa ccatggtgag tagaaccatc tggattttcc atcactttca
tttaaaagac 60tctgttgata ttctaggtac tgattccata tatcagtatc aacaaatttc
tcaaccaagg 120ggataattgg tttatctgtt tgcaattcat tccgtaattt agaaaggaga
gaaatagctt 180tcttttcagc ttccacgcct tcctgcaaaa atacaagaaa aatcaattgt
gtgtgtgtct 240gtgtctgtgt ttgtgtgtgc gtgtctatgc aattcctcta gggtaacata
tttttacaga 300cttaagaaga aaagaaaaat gttcaaacta cattatactt ctttaaacat
tacatttaga 360actcttaaac tgaaaatcaa aaaacacaca cagatctcat atgaacataa
tcatgcctta 420tctatctaag ttctggcctt tctgtgtctt cggtgatcat tactacagag
ggaaaggaac 480ccctgacaga ttttccatgt ctttcatgct tccatacaca ttcttctttc
accattgaca 540ccactagaaa agaaactgtg gcctttctga ggtttctttt ggtagctcaa
tttttttttn 600aacttgtttt ccactgagtt ctagctaggt gagagatgag atatgctgac
atacaaggcg 660ctncaatatt atctnacatg acaggccaat t
691170699DNACercopithecus aethiopsmisc_feature(1)..(699)n is
a, g, c or t 170ctcaaaaaaa aaaaaaaagc caaagtcctc aaaacggcct gcatggcact
acattctctg 60gccctttatc agcactctga cagctctctc ctttgcttat tttgctcctc
attctagcct 120ctggatcttt gcccttgctg ttccttacgc tcttctccca gggatctgaa
aggctcacac 180cctcacctcc ttcagaggtt tgctaaaatg tcttctaccc agtgaagcct
tccccaacca 240ccacattaaa aacacacaac cagcacccgt tctctatctt ccttcacttt
gcatttgtcc 300attgtgtaac atcacttaca tacctttaat ttttagttta ttaattcata
ctgcaaaaca 360acttagtttt taccatgtgc caggcattgt ccctagttgc tgacaataca
gttgaaaata 420aaatagacaa aaatcccatc ttttgaatct tttgaacctt acattgggag
tgacaggcaa 480aaacgaggta aatcagtaaa atacgtgaga cagaacgcta aaagaaaaaa
aagaggaaag 540ggctgatttt tngtgtcttc cctccagaat gcaagctcct ttgaggatac
agatttgngt 600gtttattact actgaatctc cnggacaaat agcgcccagc acatnagtan
gccattcnat 660ccaatttttn aaaatgagat actagggcag tnactccaa
699171767DNACercopithecus aethiopsmisc_feature(1)..(767)n is
a, g, c or t 171catctcacag agttacatct ttcccttcaa gtaatccttt cgctaaggct
gttcttgtgg 60aattggcaaa gcgatatttg gaagcccgta gagggctatg gtgaaaaagg
aaatatcttc 120cgttcaaaac tggaaagaag ctttccgaga aactgctctg tgttctgtga
attcctcttt 180tagaattttc ttcagaactt gtggcacatc attaaacctc cgtcagtgat
cacatatctt 240catcctttgg agtcaattta tttttggaaa cagtcaaaag tcactcggag
tgacttcagt 300agaatgaagt gtgtgatcaa attggataaa aacttttttt tttaatcaaa
aatgagtaac 360taaaaaaaac agaagactaa attttctttt tgaggcatgt aaactggctc
tgaaagaagt 420tccaaataat tcaaagatgg ttttagcaat ggcagcactg ctgaaatcca
tcagtctctc 480aaggtgactt aaaaggataa atatcattcg gatgcataga gccaatccgg
tccaccacct 540gttttgtctg actcacatgc taagagtggt ttttatattt ttgaatggct
gaaaacaaaa 600gtgaaagaaa agtagtattt tgtgatacat gaaattcaaa tttcagtgtt
cattaaataa 660agntttcttt agaacacagc catgctcatt cttacatatt atttaaggct
gcttttcaca 720ctacaacgac aggnttcagc agctgcaana aaaaccacat ggcccca
767172769DNACercopithecus aethiopsmisc_feature(1)..(769)n is
a, g, c or t 172ctttcacgag attctgtctc aaaaaaaaaa aaaaagccaa agtcctcaaa
atggcctgca 60tggcactaca ttctctggcc ctttatcagc actctgacag ctctctcctt
tgcttatttt 120gctcctcatt ctagcctctg gatctttgcc cttgctgttc cttacgctct
tctcccaggg 180atctgaaagg ctcacaccct cacctccttc agaggtttgc taaaatgtct
tctacccagt 240gaagccttcc ccaaccacca cattaaaaac acacaaccag cacccgttct
ctatcttcct 300tcactttgca tttgtccatt gtgtaacatc acttacatac ctttaatttt
tagtttatta 360attcatactg caaaacaact tagtttttac catgtgccag gcattgtccc
tagttgctga 420caatacagtt gaaaataaaa tagacaaaaa tcccatcttt tgaatctttt
gaaccttaca 480ttgggagtga caggcaaaaa cgaggtaaat cagtaaaata cgtgagacag
aacgctaaaa 540gaaaaaaaag aggaaagggc tgatttttgt gtcttccctc cagaatgcaa
gctccttgag 600gatacagatt tgtgtgtttt ttactactgt atctcctgac aatagcgccc
agtacatagt 660aggcattcga tccnattttt taaatgagat actaggcagt tactcagttt
nctgggccca 720tttcaacttt tagacaataa taccgatnag aaaaacggtt acagctagg
769173769DNACercopithecus aethiopsmisc_feature(1)..(769)n is
a, g, c or t 173cagagaacac agnagtcagt ttctcagaaa gcttctttcc agttttgaac
ggcaagatat 60ttcctttttc accatagccc tctatgggct tccaaatatc gctttgccaa
ttccacaaga 120acagccttag cgaaaggctt cttgaaggga aatatgtaac tctgtgagat
gaattctacg 180atacatgtaa cattctacga acaaccatgg tgagtagaac catctggatt
ttccatcact 240ttcatttaaa agactctgtt gatattctag gtactgattc catatatcag
tatcaacaaa 300tttctcaacc aaggggataa ttggtttatc tgtttgcaat tcattccgta
atttagaaag 360gagagaaata gctttctttt cagcttccac gccttcctgc aaaaatacaa
gaaaaatcaa 420ttgtgtgtgt gtctgtgtct gtgtttgtgt gtgcgtgtct atgcaattcc
tctagggtaa 480catattttta cagacttaag aagaaaagaa aaatgttcaa actacattat
acttctttaa 540acattacatt tagaactctt aaactgaaaa tcaaaaaaca cacacagatc
tcatatgaac 600ataatcatgc cttatctatc taagttctgg cctttctgtg tcttcggtga
tcattactac 660agagggaaag gaacccctga cagattttcc atgtctttca tgcttccata
cacattcttt 720tttcaccatt gacaccactn gaaaagaaac tgtggccttt ctgaggttt
769174784DNACercopithecus aethiopsmisc_feature(1)..(784)n is
a, g, c or t 174catggggtga ttttgagaaa aataaaaaat atttgccccc aggagatttg
tctttttgtt 60cttcaaatgt tgaaaaagag ctgaaatgct gcacagctga atgaaggatc
ttctcaaggc 120tctcctggcg cgagccaatc ccagcctcat gaacgagaga gatcctgaca
cccacagatg 180ggcacctcac agccacatgg agacagagac aggctcggtg accagccacc
ctcacagcca 240cacggggaca ggctcggtga ccagccaccc tcacagtcac acggggacag
cctcggtgac 300cagccaccct cacagccaca tgggacaggc tcggtgacca gccaccctca
cagccacacg 360gggacaggct cggtgaccag ccaccctcac agccacacgg ggacaggctc
ggtgaccagc 420caccctcaca gtcacacggg gacagcctcg gtgaccagcc accctcagag
ccacacgggg 480acaggctcgg tgaccaggca ccctcacagc cacacgggga caggcttggt
gaccagccac 540cctcacagcc acacggggaa cagctctcgg tgaccagcca ccctnagagt
aacatgggga 600caggctcggt tanccagcca cccctcacag ncacacgggg gacngggctc
ggtgaccagc 660cnacnctnac agncacaccg gggacagggc tnngtttacc agcccacccc
tcacagaccn 720cacgggggac agggtttcgt ngaccagccc accccttaca ntccacacgg
nggnacagcc 780ctcg
784175733DNACercopithecus aethiopsmisc_feature(1)..(733)n is
a, g, c or t 175aatgtgggaa atgcatcatt tgaaacattt taatggagag actagtattt
gatatattaa 60tgttaggttc ctcccagaac ttaattttta aaatttttat ccaaacttat
tttacttaat 120tatcaccatt tattgaatac attaattgaa atagctcagc tcttctgacc
tgtggagcaa 180aggnntgacc ctcaggatct cctggaagct gccctcaact aagcagaact
cagaggaaac 240ttttgactga gaaactgagg tggtcaaatt gtgctaatgt taaaatacat
aaaatagaac 300atttctttca atcagaacta ctgacactat tacatggcac aggttgccag
ttactctgat 360tagaaatact aaacagaaaa aagaaaacac ttggcttgga tccttaaaga
ggtatttacg 420gaaggtgttg ccaacacagc ccatcccaat gtctggtgag atttcctgtc
tgggagaggt 480ctatgggatc tcacccaaac accacagacc ccagtagcat ttcctggact
aatgttcttg 540tcttttcaca gtgctctgct gatttggtct ttagataacn tggtcttcct
tcctcttcat 600aggnatctat accccctgaa gtgtgggtcc ttagactcag ggggcttctt
caaaagccct 660tttggattca gnanaaaaag aancctgggc acttaactgg ggctnaaaga
aacacttctn 720ccgggttccn caa
733176729DNACercopithecus aethiopsmisc_feature(1)..(729)n is
a, g, c or t 176catgtccttt tcagtaacat ggatgtaatt ggaagccatt attctaagcg
acattaatgc 60aggaaaagaa aatccaatac cacatgttct ctcctgtaaa tcggagctaa
acattgggta 120cccagggaca caaagatggg aacaatagac attggggatt ccaaaatatg
ggatgtaggg 180aggagggaaa ggatttataa agtgtctatt gggtactacg tttagtacct
gggtgtcgag 240atcatttgta ccctaaacgt cagcattatg caacatacca atgtaacaaa
cctgcacatg 300tagactctga atctgaaagt tgaaatactt tttaaaagtc tattatatta
tcacacaatg 360accccataaa caacaacaaa aaaaagtgaa agtaaaaaaa cgcaaggtct
ttagacgtag 420gaatcagaat gatataaaga aggaaaagag atttatacta atatagaacc
tttttagaca 480tgaattttaa aaaaatgata cctaggttat caagttactt ttgtgtccac
ctaatattta 540tacactgtat ccctaaccac aattggctgt attttgaaga cagagccctc
aaaggaagta 600attcaggttn tggtgtccct ataaggagga gaacactagn agnatctcag
cttctctcca 660ccccaccccc aacccccaca aaaacatgtt aaagaaagnc tttatnttgn
gggacacagt 720nggagaaaa
729177679DNACercopithecus aethiopsmisc_feature(1)..(679)n is
a, g, c or t 177catgcaaggt caggtgcagg catctcttcc aatagggcag tgtctaccag
gtagggtctt 60tctcctctta gaatcattna tggaaatata attcacacaa cataaaattc
accctttaaa 120actatactac acacacacac acacacacac acacacgaat aaaccatatc
ccattagcag 180ttattcaaca cactctgccc ctttgacccc tggaaataat cactaatcta
ctggctggta 240ttatggattt gcttattctg gacaaatcat agaaattgaa tcattaaaca
tttggttatt 300ttgaatctat cttctttcac ttggcataat gtttgcaagg tttatccatg
ttgcagcaag 360taccaatact cattcctttt tatgcttcca taatattcca tggatatatt
ataattttag 420tcaattttta agtcggtgaa catttacact gtttctcctt tttagctatt
atgaataatc 480ttgctatgaa tattcatgta caagtttttg cataaacacg tttncaattc
tctattatgc 540acctagaagt ggaattggta ggtcatatgg taattctatg ntnaactttt
gngaatatat 600gccaaactat tttccaaagc aactgcaccc atttngtatt accaccatta
aggnataaaa 660ngttcctact ttcttcaca
679178737DNACercopithecus aethiopsmisc_feature(1)..(737)n is
a, g, c or t 178ctttcataat gaaaagaaaa aaatgaattt caactagtat cgatttttcg
gtgtgtgggg 60gcagggcatt taagggtatt atttcctagt aatgatcact tagattctaa
gccttaaaca 120tgattcaaat gcagcagaaa tcaggaaaga agcaacagat acggtggtgc
atatcgaatg 180tctagactac aaggcaaaac ccaaatacca aagaagcatc catgtgtcaa
accagcataa 240tttctaagct atgcctgggg ccacatacaa aaaaaaaaaa aaaaaggtta
gtttgaaaga 300aaaatctagg aggggtaacc agaaggtcaa ccccagttca caggaactgg
gaagaagcta 360gccgttaccc tgtgacatct tcctgagcag cttcctccgc agccagctcc
ccagcctcct 420tacaatgttt ccaaaaggcc caactcccta aacatttgct tcttcaaggt
catcctaaga 480taaggcagtg aataaccacc aaacactgag tcacggatac ctttcggcta
aaaaagatcc 540cccttcccaa aatcattaca taaatacttt aaatgccaag agggttttct
ccggaactcc 600accagaaact cccagnactt taatttagat tgggcaacta aatgtgttca
anttttgcgc 660cataaaatat taaaggcttt tcaggtctgg caantncagt tcaaaacagg
tgctttcagt 720gtacgctgaa taacagg
737179759DNACercopithecus aethiopsmisc_feature(1)..(759)n is
a, g, c or t 179cagatttttc tttaagaatt ttgtttattg caataggatt atcaaagtaa
aaattaaaaa 60gtaatgaaaa aattaaaaaa ataattttgt agctaccctt cctataaaac
ttatccagat 120tacttcttga cctatacttt gagagcagag gaaatctagc tacattaact
cagtagctct 180gcaacttcta ggtaatttct tacctgaaca gtatatccta agtactgtaa
ttcctgcatt 240gcttgcacat ttgagtttat tattccatcc ctgtattaca ataaatattc
tttacataaa 300ctttcaagag aaaaagcatt caaggtatat gtgtgtgtac acacttatat
atatgtgtat 360atatactcct gtaaaccata attggagttt aaaaaatata tggtatttgc
aattttctct 420tctttctctc tgtctctctc tctctctctc tctctctctc tctctctttc
tttcgatgga 480gtcttgctct gtcacccagg ttggagtgca gtggtgtgat ttcagcttac
tgcaacctcc 540aactcctggg ttcaagtgat tctcctgcct cagactccca agtagctagg
actacaggtg 600cgtgccacca tgcccggcta atttttttgt atttttagta gagatggggt
ttcaccatgc 660tgnccagact gntcttgaac tccctgacct tctgatccac ccgcctcgtc
ctccnaagtg 720ctgggataca ggncatgagc caccaccccc gccggtatt
759180770DNACercopithecus aethiopsmisc_feature(1)..(770)n is
a, g, c or t 180cagcttttat atatgctgag ttcaagacac ataagtacat atagataant
aatgtacact 60tcttctgtaa gaagacatat aagactgtaa tccatgagag agggaagtct
aagatgacat 120gtttgggaat cctttatatg gacatgatag atgaagccaa agagaacaat
gaaatgattc 180atgttgagtt atttgacatt ttaaaaagta tataagtatt ttaatagtgt
gaccatttgt 240gtctggaaat tttgaaaagc acaaagatct acaatgattt atttatctct
atactgatct 300gtaggaagtt tttggcatgg gaaattgtgc taatgagtat ttggaaacaa
gtgtattaag 360taagggttta caagatcatt agactttcat tttgcagact caatcagatc
tgttcactat 420agtctcctgt tggcataatt ggtttcctga ggacttatta cctgtagatg
cacaattttt 480cattccaaca atgttctgca ttccttttgg actttcctgt cttgaggatc
tctttaaaga 540gctaaaacct caggaacttc ttctacttgt ttctttaaag tcaggatgag
agacagaata 600aggcatccag ccatgatggt ttttccccag gttcttctct catgctaagc
cctttatggt 660acgatgtgcc tctcaaagga gaatgcagat ctaatactat tgcaccactc
tgaaagaagt 720atgaggagaa ggcanaagag ctatgaaaag aaaaacatcc tgatcttttt
770181706DNACercopithecus aethiopsmisc_feature(1)..(706)n is
a, g, c or t 181ctttcatgcc tagtaaagag tggggcttgg cctggagagg gaggcctcat
gggccagata 60agggagatgc tggcccatct gggcacgcat gtgcccgtag gctttccctg
tcgagatgat 120caactggaaa ggcagagaat gcggcctgga ggctcagaaa catccttgaa
gccatatccc 180caggtcctag tcctaactgc cactcttttc tttttttgaa atggggtctt
gctatgttgc 240tcaggctgga ctccaactcc tgggcttaag cgttcctcct gcctcaactg
cccaagcagc 300cacaaaccac acctggcctc ttcctgccac ttctagctta gcaggtggct
tcatctgtat 360acggggatga cgtgactgct tgggggaatg agctgagccc ttggtggaat
catggttcat 420gcaagaggtc tccggcaaaa tgctccaggc ttggagtctg ctgggcgctt
ctacccctga 480caatccgttt acttaccacc accctctgtt cagacaggga agttctttcc
atcaggatta 540tagcgaggat tggtcttcat ggcacccttg gcatccgagc acgtgttgtt
ggagctgttc 600tacgagccag gacacaccag ggaacggttn cccgcaataa acacccgtct
cttcctcgta 660ctcaagttct tcggggttgc aacattctga gagcttgtcc ttcatt
706182740DNACercopithecus aethiopsmisc_feature(1)..(740)n is
a, g, c or t 182cngngnctcg atcgttcctc ccacctcagc ctcccaaagt gctgtgttac
aggtgggagc 60cactagaccc agctgaatta tggattttta aggctgcttt atgtcaaaca
ttgcgggttc 120ttttaatatt gttttccaga tttaagattt ttttctttta agctttgtat
aatttatagt 180aatttggtaa agtacttttg aaaacaaaaa tgaaaacatt tgcttttctt
ctctacctga 240accctccaga atttagaagc aatttatgat tattcttatt tttacagcaa
catggttatt 300tgcataggtt cagtaagaat ctgttctctg tccaggcaca gtggctcaca
cctataatcc 360cagaactttg ggaggctgag gcaggcagat cacttgagat caggagttca
agactagcct 420ggccaacatg gcgaaaccct gtctctaccg aaaatacaaa aattagcctg
gcgtgttggg 480catgtgcctg gaatcccagc tactagggag gctgagtcag gagaatcact
tgaacctgcg 540aggtggaggt tgctgtaagc tgagattgta ccactgcact ccagcctggg
tgacagagtg 600agattttgtc tcaaaaaaaa aaggagggcc aggcatagtg gctcatgcct
gtaattccag 660cactttggga gaccangggg agcgaatcac anggtcagtt cgaggtgact
ntaggganaa 720aattatgttt naatagaaaa
740183720DNACercopithecus aethiopsmisc_feature(1)..(720)n is
a, g, c or t 183aaacagtaaa aaataaggaa ttttactttc tctggggctc ccaggctctc
tggttgggtc 60agggcccaag tggagcaggg aagaaggggc cactctttct gaagtctccc
tgcatgaatg 120aaaataacag ttgagtggca gtcacacact tagaagcaaa tcattctgat
tttgccttct 180agagcagaga tgtctcccct aagatccatt ttaccccagc agaaaaagcc
cgggttgtct 240ggattgtagc aacgctgttt tgacagaaag ccctatgatt tttctcacaa
acttccctaa 300ggatgctatc tttcagctac acatacttag attatttctt ctccctcacc
aactcaatct 360aatgttgcta aggggttcag tactttctct ctgctgctta cctcgtccca
acccccaagt 420tctttcccaa attccagcag ctgggaccag tctctgggac agagcagaaa
taacatggaa 480attgggggta gggttaaaca catctatcag tctaggaaca ggtagaaaag
caacaccccc 540gtgactacaa gtttggtagt gggcaacaat tttcttatcc atcatgggtg
gtggtgtggg 600tagtnattga gcataanttt atttgtagag gtgaatttgt ttactgggct
ntnaagggtc 660acatggaggc tgtccaagga aaganattcn ataatnaatg gaaatttatt
ataatttaat 720184775DNACercopithecus aethiopsmisc_feature(1)..(775)n
is a, g, c or t 184annnnactna nnnnnnnnat cggctnnttn nnttgggggg naanccagta
cttcaaaact 60ttgtattatt taataaatga tactgactag ttggctaaac atttgaacaa
aagataaatc 120tccaaaccat tctacccacc aaaataaatt ctagaaatga acaaagattt
caaagtaaga 180agtaatccac aaaagtacgg aagaaaacaa tcttaaattg gagaaggact
ttctaaacat 240ggcaccaaag gtagaaacca aaaggaatca cttgcaggtt tcatcacata
aagattttaa 300aatttctata catccaaagc actacaatgt tcagctcaag atggcaggct
aggcacattt 360gcctttcatc tttagagaac catttaaata aaaagacgga ggtacaatga
ggaaaaactg 420taacagggaa gagacgggct ggaacgacag gaagcagatg agccagctgg
gagatgaacc 480agctgaaaga gctgcagtgg agatgaaagc ctgtcctgtg canactgtgg
aggaaggagt 540gaaagacccc acctgtaggt ttggcaagct agctgaggat cgttncncat
gattgaacaa 600natggattgc acnctggttn tccngccnnt tgggtggana ggctnttnnn
ntttnantgg 660nccaacanac antnnnntgt ttnatnccnc cnnntncngn tnnnannnan
gggcncccnn 720tttttnttnn ananccacct nnncnnnncc cnnatnaact nnnnncnang
nnnnn 775185400DNACercopithecus aethiopsmisc_feature(1)..(400)n
is a, g, c or t 185tttttcccgg ngggngnnnn nnnnnnnnnn nnnnnnnncc cccccccttn
nnnnttgggg 60ggggggaaan nncccccccc ctttnnnnnn tttttnnnng nnnnngnnac
aggttttttg 120ncgnggggat nntnttancc ccannntttt nnncagnnng gnnnncannc
nnnccagcnn 180ggnngnannn tgctnncctg cncgnnncca gcccgnctct tnncctgnta
cagnnnnntc 240ctnattgnac ctccgnctnt ntatntaaat ggntctctaa agangaaagg
caaatntttt 300tttcctgcca ttttgagcng aacattgnng ngctnnggat gnatagaaat
tntaaaanct 360tnntgtgang aaaccngcaa gtgntttttt tnnggnncct
400186951DNACercopithecus aethiopsmisc_feature(1)..(951)n is
a, g, c or t 186ccgccnggtg ntgggaaaga cnnnggacgc ttcagaccac aggnaggtac
catcctggaa 60cctggaatct ggaacctcag gggctgacct ggcactgggt gggcctggaa
cctgtatctg 120cagcccagaa gcagggtctg caggtgcaag cctgatgcca ggctgcaggg
gacagccgng 180agcnggtttt tnttgaggca ggggntgata angccagcag gcccaaagca
aagnctaggg 240cnnatntntg tctcctaccc ccatgcngag gatacctnnn ttnaagctgc
ggagccngag 300gaagggaggg ggcgcangca agagaatgtc anaactancc ttncnnacct
nctncagngc 360nacctccagg ngctgtaanc actcactagg anacccttaa ggncnnactg
aaaggagcnt 420ccctangagn gatggnagca aaaaananga nacgacactn cgactgcnng
gngacgtgca 480acntggaaag actctgnncc ctncancacc tcgggnanac tatnacaaag
angnccccca 540ncacctncan aatgaaagna aangtgancg ngcnanacca acnncgacnn
ccctnggcca 600agagaacacc aataacnaga ntagganatc caaaagcggn aaanacnaca
gngctatnng 660gaatgcncaa gccaccatnn cttgcantgg nncaacagnt gnaatcnaaa
nctacnnccn 720cnatacactg gagagacaan naccnagcnc cantaaagcg nnaaaaanga
gaaaacgnaa 780aaaancgcgc anngnngcng ncnaatngcc cnnaccntaa ccctccnnan
aaaaannaat 840cnngaacctg gnnacgacnn ncnaagnggc ncaanccncc cncaggcgnc
tcnnccncct 900gccacnanca ccccngagcc ncnncagagn caccngcctn acncacccan c
951187450DNACercopithecus aethiopsmisc_feature(1)..(450)n is
a, g, c or t 187tnctnntttn ggggtnnnan nnnnnnnnnn anntccncca atnnnnntgg
gggggaannc 60ctggtttcct gcactctccc tcttttccac tcatgtcgcc aggcttccca
aatgttccct 120gactattctt tccctttttt gtgcccacct gtgccccagg cacagcatgt
gacctagtcc 180tgggagtccg cggtggcaga actgcaggcc gttggggcct ccaagtagac
catgcaagtt 240tcacagccat attnctctga tatcagaagc taaggagtcg tgcctggcca
gtactaggat 300gggggtccgn ctgggaacac tgggtgatgt aggctttttg cttacagnnc
cctccctctn 360tccccctnca gnngnctnga tncacaacca tnccctgact ntnntntncn
ntnnnnncac 420ccaactgcat ncnanacaca nncngngact
450188338DNACercopithecus aethiopsmisc_feature(1)..(338)n is
a, g, c or t 188tncnncttnt ggnggannna nncnnnnnnn nnnntcccnc ctnnnntggg
gggggaannc 60gnncacntnc nntttangaa agagacgacg cttncgagga agaaggtttn
tgggacgcgg 120gactgggnag agctccagag ccccagcagc ccggctcaag gncccctgcg
cataggcgcc 180ccaccgngac gncagggacg cgactnccgn gangccccgc gcgccgnnng
ancccaggcg 240cgggcnnaga ctgngatcnn ggagnngccc ngngccnnnc ngacggngcg
nnnnggnggn 300cnngggcgcg ggcnnngnga nnggacagnc nggagcnt
338189936DNACercopithecus aethiopsmisc_feature(1)..(936)n is
a, g, c or t 189ttttnngggg gaannnnnnn nggngtangn nnnnnnnccn ccgcggttnn
nccttggggg 60gggaannncc nnnccangtn nctttttcat gnaaagngna cgacgntctc
cgaggaagaa 120ggctccggga cgcgggactg ggtagagctc cagagcccca gcagcccggc
tcaaggtccc 180ctgcgcatag gcgccccacc gtgacgtcag ggacgcgact cccgcgatgc
cccgcgcgcc 240gtctgatccc aggcgcgggc tcannntttt atctcggagt tcccctgcgc
cttcctgacg 300gtgcgttctg gcggcctcgg gcgcgggctc tgcgatcgga cagcctggag
cctttggcct 360cgatttacat gggaggcccc tcgaaacagg gcacgtcact tgcccccggt
cacctgcgga 420cggggagact ctcgggttga ctccaaggcc tgacattccc ctccggtttt
caccgaggag 480gatgaggatg ttgtcaggag ctgcggcaag gctggaggag cttgcgttgn
gtccacccnc 540ctctgnacag gccttagcat ncacccncag tttctccctt gacttntgaa
cccnaactcc 600ttacccccgc aagtnncnnc cctgtttnga ttgctgaaac tgcaagtgac
ggaagantaa 660aatgtttgcc naagcntnat gcttnanggn ggntgccngg gtataaggtc
angggttggg 720ggcccttnnc cctgnngggt nggcnttaag ntaacccagg gnncntggca
nttnantnnt 780attcaanana tgccanggnn ntcggnntnn aanggntntt tnnanaaaat
nnttnccctt 840nttannctnt annccnnagg gaaanccntn gggtcttgtt tngccctgna
aanacnatna 900aaggggtaat nncccncnct tnaatntnnn gncncc
936190936DNACercopithecus aethiopsmisc_feature(1)..(936)n is
a, g, c or t 190tttttnngng gannncnnnn gtttntngnn nncccccccc ccatnnnttt
ngggggggaa 60nncccnnnca cgtcctcntn atgaaagaga cgacgcctcc gagaagaagg
ctctgggtac 120gcgggactgg gtagagctcc agagccccag cagcccggct caaggtcccc
tgcgcatagg 180cgccccaccg tgacgtcagg gacgcgactc ccgcgatgcc ccgcgcgccg
tctgatccca 240ggcgcgggct cagantnnna tctcggagtt cccctgcgcc ttcctgacgg
tgcgttctgg 300cggcctcggg cgcgggctct gcgatcggac agcctggagc ctttggcctc
gatttacatg 360ggaggcccct cgaaacaggg cacgtcactt gcccccggtc acctgcggac
ggggagactc 420tcgggttgac tccaaggcct gacattcccc tccggttttc accgaggagg
atgaggatgt 480tgtcaggagc tgcggcaagg ctggaggagc ttgcgttggg tccacccgcc
tctggacagg 540ccttagcatt cacccgcagt ttctccctga ctttgaaccc aaactcccta
cccccgcaag 600tccttccctg ttttgattgc tgaactgcaa gtgacggaag aattaagtgt
tggccgaaag 660ctgatgcttc agggggtgca ggntagaggt caggggtggg ggcctngcct
tgnggngngc 720atantgtanc ccanggtccn gcactgantn ttnnaggaat gcanggaatn
gnatannang 780gtnctaanaa antntccccc tannaactga taccnnagna accntngggc
tgnntgancn 840tgaaaaaccc annagggtaa ngcctnnctt atnngggccc cnntntcnag
annaaangcc 900ctggggtttc anngaaaacc cnnnnanaaa ntntgg
936191951DNACercopithecus aethiopsmisc_feature(1)..(951)n is
a, g, c or t 191tttttnngng gancnnncng gttgttgnnc cntcccgcgc attcccttgg
gggggnaacc 60cccnnncang tncctnttna tgaaagagac gacgcntccg agaagaaggc
tctgggacgc 120gggactgggt agagctccag agccccagca gcccggctca aggtcccctg
cgcataggcg 180ccccaccgtg acgtcaggga cgcgactccc gngatgcccc gcgcgccgtc
tgatcccagg 240cgcgggctca nanttnnatc tcggagttcc cctgcgcctt cctgacggtg
cgttctggcg 300gcctcgggcg cgggctctgc gatcggacag cctggagcct ttggcctcga
tttacatggg 360aggcccctcg aaacagggca cgtcacttgc ccccggtcac ctgcggacgg
ggagactctc 420gggttgactc caaggcctga cattcccctc cggttttcac cgaggaggat
gaggatgttg 480tcaggagctg cggcaaggct ggaggagctt gcgttgggtc cacccgcctc
tggacaggcc 540ttagcattca cccgcagttt ctccctgact ttgaacccaa actccctacc
cccgcaagtc 600cttccctgtt tgattgctga actgcaagtg acggaagaat taagtgttgg
cgaaagctga 660tgcttcaggg ggntgcaggg tagaggtcag gggtgggggc ctcgccttgt
ggngtgcata 720tgtagcccag ggtcntggca ctgattntta ttaggaatgc aggganttng
attagatggt 780ttcttagaaa atatcccctn tgnanctgnt acctgagnaa ccgctgggct
ggcatnacct 840tgnaaaaccc agaanggtta nngccctttc ttantngtgg cccnattttt
tcaggacnaa 900angggccntg gntttncaat gnaatcncnt ttgcncaaan nnctggtttc t
951192938DNACercopithecus aethiopsmisc_feature(1)..(938)n is
a, g, c or t 192ttcnnggntc ttnntgntan attttccccc ccattttttg ggggggaanc
cnacncanca 60aaaggtagaa attattgata aantntaaat gttacaaact gcngctaaaa
gaagcaaaag 120agaacatgct gtatgatcct tttttttttt tttttttttt tttttttgag
gcggagtttc 180actcttgttg cccaggctgg agtacaatgg cacaatctcg gctcaccaca
acctctgcct 240cnnnttttca agcaattttt ntnncttann ctccctagta gctgggatta
taggcatgtg 300ccaccaggcc cagctaattt tgtattttta gtagagacgg ggtttctcca
tgttggtcag 360gctggtcttg aactcccgac ctcaggtgat ccaaccgcct cggcctccca
aagtgctggg 420attacagacg tgagccactg tgcccggcaa tcttttttct taattttaaa
ttttttagag 480acaaagtctg gcttttctag tnccaggctg gagggcagtg gagccatcct
ggctcactgc 540ancctttnnc tcccaggctc aagccatcct nctaccttaa ncttcctgag
tngctggnaa 600ctacaggtac acaccaccat gtcagnctaa tttttttttt tttttttttt
ttgaaaccna 660attttttcnt tgttcacccc tnntgganan ncaggnngna nnanctctnn
ccncntcnac 720cccttacnnc naagnncaat atnaantatc nncctacnnn cccnagntct
tnnnntttta 780annnannttn tatttttntt nnttatantt tacctnnntn tttcntnntn
ctnanccctn 840ntncactnnt nnactantct ttttccacnt attcttctct ncnnctntnc
tnatatcncn 900nnccnnnctc tctcttntnc ttctttnttt ctnnnatn
938193804DNACercopithecus aethiopsmisc_feature(1)..(804)n is
a, g, c or t 193tntngggggt nnnaaaacnt tncnnacata atcgccncaa tacaanttgg
gnggggaaaa 60annctgnntc attcctccnt gnacccatct ccatgccgtg naagcatctc
ctncttggac 120ttgcactatc tggtcccata gcccttgctt attcttaaat gggagtcact
ctgacttgca 180ttgtggggaa gggtatacct ggggcacagt cctctgggat ggacacttcc
ataggaaggg 240gcagttatac gtggacttat gtcctcctac actctcatcc agaaccatcc
acccagaagc 300aggagttgtt tcttttagaa accagccggc ccaatcagcc cattttatag
gtgaaggcag 360tgaagcccag agagataaag catcttgtcc aaggtcacag agccagacct
agactaggct 420gcctggctcc tagttcaggg ctcatcccac cctagccggc ttctggctag
acagaatcta 480cccatcctgg cccagactct ctggtgggaa gtcagggatg cagnggtcag
gatgggcatc 540agagccagca ggccctgagc acggntcacc caagtggaac atgaacttcc
taaactccag 600nggaagttag aaatggcana ttgatcagng ctaatgagct taaaacaccc
agggattaaa 660aaaaaaaaca tgaanaagct ntacttnaag cataaatntg ntnaacanaa
agganaccng 720gctncncnnt ntntnanann nacnnnntgg aggctnaggg ggnnngnnca
tnnggggngn 780ganattngnn ttngnaaggg gnnt
804194560DNACercopithecus aethiopsmisc_feature(1)..(560)n is
a, g, c or t 194ttctanttnn nnnggtnnna ancannnnnn ncatnntcgn cncatnnnnn
ttgggaggga 60aannnaatna ataatcaaan ttagnaattg aatttagaat ttcatttatg
aataaaaagg 120ctgggaggaa acacacccca accgacacag tggatgcgat aggataagac
tatgagcaga 180ttttgttctt ccttttcacc gtctgtattt tccatcaatt atttgtatga
ttaaaatcaa 240tcatttcaga caagagggac attgtgagct atctgtgaga aatgtcttct
atctgtttcc 300agatagaagg ggctccagct cggtttgggg aaagtcccaa tgccattctc
ttaaccaaga 360ggtttcctac ctcatctaat gtggagattc tacttacccg ggaagactcc
cctcctgtta 420cctcaagtct gcagccggcc tcccagactt ctgcctnctn ctaaccacag
cctgcctggn 480tgcaggncgg ngggaaagga gggcatangg ggctgnatnc cgnanaggcc
ctnncactcc 540tngactnang cagggnnctg
560195977DNACercopithecus aethiopsmisc_feature(1)..(977)n is
a, g, c or t 195cnncccccng gntncccncg ggnnnnnnnn nnnncccccc ccnanncttt
gggggggaan 60nncnnncctt tnggngnatt gnngggnana anncngtnct tccnnaatag
natgnggcng 120canttcaact ncgctaatta acggaacagc aggctngnaa ttctgacaac
agcaggacac 180aaanggggcn gggatcagca ctgaatgccg gcgaagcatg ccnccccccc
ttaagaagaa 240gcacaacacc cacgacccac attnnntntn gggncaggtc catgaaggng
cnaccctnga 300tttagttana ngcnctnccc tgcagcaact ccaagggcnc agggttttta
aaatgncncc 360tcaggccttc ttnagaggna gcaagccngc cccaactggc ctttttcnna
aaaaagangg 420aaacaggnct gngattggtc nagagcagga nncgcccagc ccnttnggct
ccccngggcc 480acacngnaag aaaaagaatn gnnttggacc acacagaaaa cacaccaana
ctaangacag 540ctgaaaagct caaaaaaaaa atcgcnaaaa aatccctcaa tgctcnaaga
agtccncaaa 600nncgccgngn gacngnnaca cagctnccng gccngcanga cnncnggggn
ncacaggnng 660cnacacccag gaccagnagn taatatcnna aaagggtaac aanaaaancc
ctaataccaa 720aaangcnatg anaatggaag cnnnacntcc tncaaaagac aagccctang
gaaancntcn 780cncnacccnn nccccaaccn ggcanncggg cccccaccca aaaggggggn
nccgccccgg 840aannnaaaan ccnacnnngg ggaaaaanng accnnaancc ngaaanngtc
tatancccca 900cngnccnaaa acctcccang ncaatnaccc cnccctccta aaaggntagg
annaanacnc 960nggngcaaag ncnncca
977196868DNACercopithecus aethiopsmisc_feature(1)..(868)n is
a, g, c or t 196gaannccnnc nnaaaaaacn nnnnnccccc nccccatann ncttgggggg
gaaannnccc 60ccccacaagn natantnagn aggnaggaaa acacanttaa tatatctcac
tagcnctcat 120ttccctcccc caccctcatc ccactccact gctaagagag agaaatnnca
gcactgctat 180cctgttntat tatacattnt cccttnngag tnaaggattn naagattnng
aaagtaacag 240aatagaaacc aaaagtnnta ctcaactncc aatttggctt aaaaagagag
aaataatnat 300tattncctat gnnacccaaa actnattctg nnaataacag ntataattat
atattcaaan 360naataaatga agatcgccaa aatcacctna atataatngn nagcagctaa
agaacaaaaa 420tnnnnnncat nngctnctat aagnagacat cacatganna ctnctatnga
ccagnaagaa 480actagnaaaa ncaggcagnc acccaccatn cnnnnctaac anncnnnnnc
nnannctatn 540caaccnnnnc ggnatanncn naagaagcca aatcaagaaa nnagaccnnc
atgcctaaaa 600aaaaanngng nnatcnnaan acatcangaa caggaaccng nngnanataa
cacaggnann 660caaagcnnna ncgncaannn cnagaacccn naaacanaaa ggcagcnnan
anncaagann 720agaaacngaa nncacanaac acanagcann nncncanaaa gcnnnnnnca
nnnnngaacg 780aagaaannnc nnnnnaccaa aggccncaag ggcnnncaaa nnccnnngcc
aannnaaaaa 840aaaccnanca aaggcncnng anggaaaa
868197260DNACercopithecus aethiopsmisc_feature(1)..(260)n is
a, g, c or t 197ttttcnggng gannnnnnnn nnnnnnnnnn nccncnccgn tnnnnttggg
ggggaaannc 60nnnncacang nnatnttngn ggaggaaaac acatttaata nanctcatta
gccctcattt 120ccctccccca ccctcatccc actccacngn taagagagag aaatnncagc
actgntatcc 180tgnnnnatna tacatttncc ctnnngagtn aaggatnnna agatnnngaa
agnaacagaa 240nagaaaccaa atnttttttt
260198901DNACercopithecus aethiopsmisc_feature(1)..(901)n is
a, g, c or t 198gggnancnnn agnngnaana nnccaacccc gccaanatnt anggggggan
actntcacaa 60gtatacaaga ggaggaaaac acaattaata tatctcacta gcattcattt
ccctccccca 120ccctcatccc actccactgc taagagagag aaatttnggc actgctatcc
tgttntatna 180tacatnttcc cttttgagtn aaggattnna agattntgaa agtaacagaa
tagaaaccaa 240aagtttnctc aactnccaan nnggctaaaa agagagaaat aatnattatt
tcctatgnna 300cccaaaactn anncngnnaa taacagntat aattatatat ncaaatcaat
aaatgaagan 360cgccaaaatc accttaatat aattgncagc agctaaagaa caaaaanncn
ncncannngc 420nncnataagn anacatcaca tgatnactnc tatngaccag naagaaacta
gnaaaancag 480gcagncaccc acccacncnn nnctaacatt cnnnnncnna nncnanccaa
cctnnnncgg 540natatncnna agaagccaaa ncaagaaaan nagaccnnca ngccnaaaaa
aaaacngngn 600nancnnaaac atcangaaca ggaaaccagn ngnaaaataa cacagggnat
ncaaaagcnn 660tanccggcan nnnnccaaaa acccctaaac anaaaaggcn gncccagaac
ccangaaana 720gaaaaccnga aanncccngg nnaancccgg cancnncccc caatccacaa
ccccccgnna 780naancncccn aaacccancc aaaacanaaa acccngnggc naaaaaggcn
ccccnaaaaa 840aanggnnccc cggnccggcg gncgaacncc cnagggncaa nannggggng
nagncaaaaa 900a
901199885DNACercopithecus aethiopsmisc_feature(1)..(885)n is
a, g, c or t 199ttttttnggn ggntttnnnc nnttttnntc nnnnnncccc cccgattnnn
nttngggggg 60aaannnccnn nccanaagnn atnttagnag gaggaaaaca canttaatat
atctcactag 120cattcatttc cctcccccac cctcatccca ctccactgct aagagagaga
aatttcagca 180ctgctatcct gttttattat acattttccc ttttgagtta aggattttaa
gattttgaaa 240gtaacagaat agaaaccaaa attttnntca acttccaatt tggctnaaaa
agagagaaat 300aattattatt tcctatgtta cccaaaactt attctgttaa taacagttat
nattatatat 360tcaaattaat aaatgaagat cgccaaaatc accttaatat aattgttagc
agctaaagaa 420caaaaatttt tttcatttgc ttctataagt agacatcaca tgattacttc
tattgaccag 480taagaaacta gtaaaatcag gcagtcaccc accattcttt tctaacattc
ttttncttat 540tctatncaac ctttncngta tattcttaan aagccaaatc aanaaatnan
accttcatgc 600ctaaaataaa attgtgntat cttatacatn atgaacagga acctgtngta
tataacacaa 660nntatnncaa agctttatcn cantttctan aacccttaaa caaaaangca
nnctcanatt 720nnaanattan aaaactnaat tctggaccca antgtanatt aactctnnan
acatttttnn 780gtgnattaan naaaaactgg nnncctatcc ttaactttaa naggtcancc
caaanttntn 840nnanaacaan ncctnnnnan aancaantta tatnaaacca nctan
885200941DNACercopithecus aethiopsmisc_feature(1)..(941)n is
a, g, c or t 200ttttnggggg anntananng nnnnnnnnnn nnccnngnnn nnattggggg
gaaannnccn 60nncttngnat ttagaggagg aaaacacntt taatggatct tattagcttc
atttccctcc 120cccaccctca tcccactcca cngntaagag agagaaattt cagcactgct
atcctgtttt 180atnatacatt ttcccttttg agtnaaggat nntaagattn ngaaagtaac
agaanagaaa 240ccaanntttt ttttcaactg gnaattnggc tcaaaaagag agaaataatt
atnatntcct 300atgttaccca aaactnatcc tgnnaataac agttatnttt atatattcaa
attaataaat 360gaagatcgcc aaaatcacct taatataatn gncagcanan aaagaacaaa
aatnctttca 420nncngcttna ataangnnga catcnccatg atcacctnct attgaccagn
aagnaaacta 480gnnnnaatna ggcnanncac ncacnanann nanncnaanc accannnnna
cnaannncna 540ttcaacannt nannggnana ntnncnnaat aagccnaaat aanananann
gccccnanan 600gcctaannan nancgaggna atgcnnnncc caannttnaa caggnatncc
nggcagngnt 660tntaacanng annatttcan angnnnnanc cggnaatact nnnanaannc
cnannaaann 720naaaggnnan tcnnaatnca angttnaana aaangnaatn cncccnnnnn
antantaaat 780aangncnnna ntannannnn nctancatcn cncncnatgc acnnnnnaaa
ntnnnnnntn 840acnnncnnnc nnngnnaaan nttnaangga nnncnnnntn ancacannnn
cncannaang 900nnnnnnaana nccacaannc aacacatnan caancacnaa t
941201886DNACercopithecus aethiopsmisc_feature(1)..(886)n is
a, g, c or t 201ttttcccnng gntnnnnnnt nnnnannnnn nntccccccc catnnnnttt
gggggggaaa 60ancacagnaa cacagngttt nngnnctcag naaagctttt ttccagtttt
gaacgtaaga 120tatttccttt ttcaccatat ccctctatgg gcttccaaat atccctttgc
caattccaca 180agaacagcct tagcgaaagg cttcttgaag ggaaagatgt aactctgtga
gatgaattca 240cagaacacaa agcagttttt ttagaaagct tctttctagt tttgatctga
gaatatttcc 300cttttcacca tagacctcta tgggcttcca aatatcacgt tggaaatttc
acaagaacag 360tgttagcgaa aagcttcttg agggaaaagc tataactctg tgagatgaat
tctacgatac 420atgtaacatt ctacgaacaa ccatggtgag tagaaccatc tggattttcc
atcactttca 480tttaaaagac tctgttgata ttctaggtac tgattccata tatcantatc
aacaaatttc 540tcaaccaagg ggataattgg ttnatctgnt tgcaaantca ttccgtnatt
tnanaaaagg 600agagaaaata gctttctntt cancttncca cgccttncct gccaaaaatn
ccaanaaaaa 660ancaatngng nngnggngcc ncgnntnntg nngnttngng tgtnccntgn
nctntccnan 720tcccnntnag ggnnaacnaa tttttncnga ctttaanaaa naaaanaaaa
aanngnncaa 780accacnttnn aaactnnttt aaanntncca tnnnaaacct taaancnnaa
aaccaaaaaa 840ancccccacn ancnnnnnnn nanananann nnncccntan ttnttt
886202925DNACercopithecus aethiopsmisc_feature(1)..(925)n is
a, g, c or t 202ttttntggng gannnctnnt nnnnnnnttn nnccccncct annncttngg
ggggaannnn 60cnncccactt agnatttttt ncncaaaaaa aaaaaaatag ccaaagtcct
caaaacggcc 120tgcatggcac tacattctct ggccctttat cagcactctg acagctctct
cctttgctta 180ttttgctcct cattctagcc tctggatctt tgcccttgct gttccttacg
ctcttctccc 240agggatctga aanntttttt tccctcacct ccttcagagg tttgctaaaa
tgtcttctac 300ccagngaagc cttccccaac caccacatta aaaacacaca accntttccc
gttctctatc 360ttccttcact tngcatatgt ccattgngta acatcactta cataccttna
attntnagct 420natnaatnca tactncaaaa caccttatnt nttaccatgt nccaagcatt
gncccntant 480tgcttnacan tacancncna anatnaaatt cnacanaaaa tcccatnctt
tttgaatntt 540tttgaacctt acattngnaa gtnncannca aaatccnang ttaaancata
aaaatncccn 600tgnanacnna acccctnaaa naaanaaaat angaaganag gggcctgaat
tnnngngcnc 660tttcccctcc caaantncan acntcctngn angnaaccnn atctnnnnng
nnntnnnntc 720actnccgtnt nttcccgaca anaancnccc cnnnnccctn ntnngccctt
ccatnccnat 780tnttnaaana ttaaaanccc cccncnctcn ctaanttnct ngggnccnat
ttcaaacttt 840tnaacnaann anncccnncc nnnaaaaacn ncnnccnccc tnngnnnccc
anncnaaatc 900atccnncntc nnctcctcnt ctccn
925203895DNACercopithecus aethiopsmisc_feature(1)..(895)n is
a, g, c or t 203ttttttcgng gattnctnnt ntnnnnntnn ntccccccat tnnncttggg
gggnaannnc 60nacgattcan gtnttatnnc tacgaacaac cattgtgagt agaaccatct
ggattttnca 120tcactttcat ttaaaagact ctgttgatat tctaggtact gattccatat
atcagtatca 180acaaatttct caaccaaggg gataattggt ttatctgttt gcaattcatt
ccgtaattta 240gaaaggagan anntttcttt cttttcagct tccacgcctt cctgcaaaaa
tacaagaaaa 300atcaattgtg tgtgtgtctg tgtctgtgtt tgtgtgtgcn tgtctatgca
attcctctag 360ggtaacatat ttttacagac ttaagaagaa aagaaaaatg ttcaaactac
attatacttc 420tttaaacatt acatttagaa ctcttaaact gaaaatcaaa aaacacacac
agatctcata 480tgaacataat catgccttat ctatctaagt tctggccttt ctgtgtcttc
ggtgatcatt 540actacagagg gaaaggaacc cctgacagat tttccatgtn ttttcatgct
tccatacaca 600ttnttctttc accattgaca ccnactanaa aaagaaaccn gtggnccttt
ctgaggtttt 660ttttttngnn anntnaattn ntttttttta aacttggntt ttccncctna
attnttancn 720taggntnana aaangaaana ntgcctnnna tnaaaanggn ncctncaatn
ntatnttacn 780cnnanaagnc cnattggnna gggngcanaa antntnanng ggnnacnaaa
ataaaannaa 840aaataactct nnnanccttt ggttttacat taacnaaana nntctncccc
caana 895204887DNACercopithecus aethiopsmisc_feature(1)..(887)n
is a, g, c or t 204ttttcnngng gntnnnnnnn nnnnnnnnnn nnaccccncg tnnnnntngg
ggggaannnc 60cnncccacga gnatttttnn ctcaaaaaaa aaaaaaaagc caaagtcctc
aaaatggcct 120gcatggcact acattctctg gccctttatc agcactctga cagctctctc
ctttgcttat 180tttgctcctc attctagcct ctggatcttt gcccttgctg ttccttacgc
tcttctccca 240gggatctgaa aggnttacac cctcacctcc ttcagaggtt tgctaaaatg
tcttctaccc 300agngaagcct tccccaacca ccacattaaa aacacacaac cagcacccgt
tctctatctt 360ccttcacttt gcattngncc attgngtaac atcacttaca taccttnaat
tnttagttna 420ttaattcata ctgcaaaaca acttantttt taccatgtgc caggcattgn
ccctagttgc 480tgacaataca gnngaaaata aaatagacaa aaatcccatc tttngaatct
ttngaacctt 540acattgggag tgacaggcaa aaacgaggna aatcagnaaa atacgtgaga
cagaacgcta 600aaagaaaaaa aagaggaaag ggctganntt ngngncttcc ctccanaatg
caagctcctn 660gagaatacag annngngngn nnnnnacnac ngnatctccn gacaatagcn
cccannacan 720annangcatt ncnacccaan tnnaaaaang annaacnang gcannnnccn
aannncnggc 780cacatnncaa ccntaaaaca anaanaccca anaaaaaaac ngnnncagcn
aggncacnaa 840nnaagaaana nccgnncnna attnnnggng caggccntna aanncca
887205843DNACercopithecus aethiopsmisc_feature(1)..(843)n is
a, g, c or t 205acccccccca tnnnnttggg ggggaaaaac canccagtaa nagttttgnn
gcaaggnngg 60tggctcttaa tcatcagggg caaggtagat ttaattctcc attatccatt
aattatttaa 120tgaacaccaa cagtgggatt gcaagtggga ggtttagaac aacagggctc
tgtggcaaag 180actactagac catggtatca ctagggacag ctagttgggg aggcnttnng
ggtattactt 240ggcttataaa accaaaatag accaacagca gattattaaa atgctggtgt
tggctgccaa 300gtggaacgta ataatcacac atctggtttt ccaaattgaa cagttcttag
atccagaatc 360ctgtgattga tagagatgct agatcctttt gcagaaaatc ttataatgcc
ccaatgaatt 420tatagtagta atttccccaa tccttctcca aaagaatcta tgctgcagaa
aataaaatac 480ctgnacagng ngcattacat tgngcactac agagatgaaa gtagccaaat
atttcaagtg 540ctgnngaatc canagttnga gatgacacca ataccagaga aaacaaaaac
catcatgatg 600ccctggntag ggngggtgtg ngaaanccan gnggaaaaan aaagncttgg
gcccnacant 660ncanatataa atgnncaaag agncnggcna cccnccccgn naanaaggnn
agggncnctg 720nnggccnaaa nnaggnnngg aagcaccnaa anaannngaa anaacccccc
accaaaaccc 780ccgngcnccn gaccnggana ggggggnncc cntncncann ccaaaanggc
ccannggnnn 840ncc
843206927DNACercopithecus aethiopsmisc_feature(1)..(927)n is
a, g, c or t 206ncncccccng gnaanccccn ggngtaannn nnnncccccc ccaatanntt
tgggggggna 60annncccnnn canagtgnaa tantaagnaa ncaaaggcag cngagtcagn
accaaaacta 120acagnanaat aacagnaaaa nnnccaccac catatgaaag caggggaaaa
atatatggaa 180acagatatgg ccaaaaaaaa ggatgcagac aacgaagnaa gcggacagaa
gcccgagaag 240aaaaacgggg ncgggggaga aaggagacta tnaataggaa aaangaaaaa
gcanacacag 300ggcgactgag caatacagaa agcaaagang cnggataaaa agcagggccc
tagagtggga 360gtggcncaac acgaagaggg gcatccagag ggggaacaca gcgcngggng
acaggagggg 420gnccaaaang gaggaaaagc gcccnncnca gagaaccanc aggcgcggcc
caccccgggg 480cggcagccgg ggagggggcc cacagangng ggngagaagc caagaaacnc
agcgganggn 540agggaancac nggcccangc gcaggggaca ccccccagaa gccnaggaca
gagggagggg 600caaggngcac actaagganc cnnnaangaa cggccagagg ngcaggancc
cacannagaa 660gnacccngaa ggggcaggng caggcaagnc cccgcngcan gaggacaaaa
cnggccngcn 720gaaaanggnc gccccnncac cccnccngnc cnnaacccac ngcaaccacc
agncnnnnac 780annaancccn aaaacacaaa ngnccccacn nnanccancc cganaaaagg
cnaanaacca 840ggngnaancc nacccaccng gnccgnanga cccnggaaac cnnnanncca
nncnnaannn 900nnacccnaaa ccaaaagnnc gannacc
927207940DNACercopithecus aethiopsmisc_feature(1)..(940)n is
a, g, c or t 207ccccggnatc ntttctgtnt nntnctnnnc ccccccctta ttttgggggg
ggaannnccn 60nnncntnnnn nnntttncca ccnaaaacta tttnttntnc tnncccgcct
atcctccaaa 120ctagcaatan ttcggttctt ccctcttgct ctcgggcgga ttcctgaaag
tcgtttattc 180tcttaattaa tacgccgctc cagccccgcc cgttcagctc attctcttaa
tcgcattacc 240ctggctgcng nnnctttttt ttttttccac ctgctgccac ccacccagac
accgcctncg 300gctctttccg gaccatctca gtttctcctc cttccccngn cccaattttc
tttaggctat 360ttctggctcc cgtaggtttn tcatgctctc gttagcccca ccccatcacc
accancggct 420ctttttcggc tctctcccgn cncctcctgt ctcctgctca ggctcttttc
cagctattnn 480cgactcccct cntactcacc ctttgccttc ngaaactntc ccaccngccc
ttcaggcaaa 540tcngtctcna ccccctantc ccgcacgtga acacagncct nccccctccg
ccttcttaga 600naccccctct caccnnnncc ctttccnncc catcctcaaa actananggn
tgggtacngg 660ccnanccncc cnttttggtg nnnaannccn gaatcgccgn caaggncccg
gtncntnccc 720ngaaaancct atngncnggn cacaaacang ggaaacannn ttcncacccn
ttntccactg 780anccncttcc cccntcaccc ttnaaanaca ttntttnnnt ttatctaaaa
ccnttcancc 840cccncctcct tcggncacct cnttnctant ncccatatan ccccntagnt
natncntnca 900atnccngcac cnnntntnta tctaatnaaa ccccaacccc
940208881DNACercopithecus aethiopsmisc_feature(1)..(881)n is
a, g, c or t 208tttttccnng gnnattcnnt gtnnaatntn ntntcccccc cattntttgg
gggggaanac 60ccgnanttga aatttnggga caaacaaaca tanctctttc tctttccttg
aagggttaat 120gctccaacca gcctcagatt ggttcgcttg aatcttaaaa ttacttttct
ggtcacgcgc 180gccgaaggtc taagcatttg tgaaatgtct tttttccccc cccccacccc
ttgatgctgt 240tctctttggn nttttttaat tacacagggg ttgagaaacc aaattaaaat
taggcgtgtc 300tggtcaacag tgatcacgtt gcatgctttt agctttgntt gttgaagttg
cttctcctcc 360ctgagtggct ttcctccttt tttttttttt ttttttattt taaaaaggaa
atatcataag 420ctctttcaga aatactcaca ggaagtgagt gtccgtatgc tggttactca
ccancaactg 480agtgttggca ggtggagaat gctaccgcag ccgcccagac agatctgcag
actggcccca 540ttgcagagga ttagacacag ggtgcgtgga tcatagggtt tttgtacaga
angcagtttt 600aagaggaaat tggtcactgc atgtcatctc gaggggtggt gattcangga
gccaggcctn 660ggggttcana aagnacgttg ctngccatct tnggaggttt cctgctcact
tntcaaangg 720ncaggctngc cttttaaaaa tcaatgttcc ttccaccccc aaaagggntt
ctttttgcag 780tgaatcanct nccaaaataa atagcccccn tttttttgga aaagaacgtt
tgnaaatccc 840ncnttttaat ggnangtttt naattngggg gttnantcaa a
881209896DNACercopithecus aethiopsmisc_feature(1)..(896)n is
a, g, c or t 209tttttccngg atnttnattt ntanacttat ccccnccatt attttanggg
ggnaanccct 60nncanaatat tgtnttacaa atatcatttt ngtgtatgta tgtcaaaacc
aaaactgcct 120ttatgtcaat atgctgtaaa aatctatcag aatatatctt aattcttaac
tttcattgtt 180gtctgtgggt tgtcttgtat aattattatc acatctacag tattttctgt
aggtaaatat 240gaaatgtttt tttnatgtac cagggggaaa atgcccttta ataagccttt
ccctagacaa 300agcaccattt aggcgtttag aagcaagaac tagtganntc agaaattgct
gtcatacata 360ctcacctgtg aatggtcgta caaaggatcc caagcgcagg acttgtcctg
gaagcagagg 420atcggattcc accaggaaaa gaggcaagta gaaatgccaa atgccagcgc
tccctttccc 480cagctcatct tatttgtagg cactcagatt tttggaatcc tccaggacta
acaaatanaa 540accacactag gttgtttttc ctaattncct gtgaaatgag tcangtangt
caaacanctt 600atccactcca gagagagaac caattccttt gagctacact ccctgttttc
cagtnaccct 660aatnccctct ntggtgtccc ttgaanaaag ggnntgccna ccantgcatt
ggagagccca 720ccgggtttnt gaatgaagan nattgtnaaa antnnccaaa aagttaannn
gccttcaagg 780gganagtttn cctttntgaa nattnaagna ggaaaaatcc cannttaaaa
tacctgggnt 840ccngtttttt nntaaaaaan cnnnnnactt ttttttggnc naangntttt
tttttt 896210869DNACercopithecus aethiopsmisc_feature(1)..(869)n
is a, g, c or t 210nnccttctaa ttttntagtt tnnnagctca cttataaanc aggctacagt
gttattctta 60agtattcatt gttgtataac acactacccc caaaatttag gagcttaaaa
taacagcaaa 120cacttattat ctctcatggt tctgtgtgtt gactagacat ttcggctcct
gtgcagatgg 180ctggagcact gagctntttt ttnggtctac agtgctctcg cttacatagt
aggcactagt 240gttggctgct ggtagcaagc tcagttgggt gtgttgacca gannnnttgg
ttctgctcta 300tagaggccac tgtacattgt tacttaaatt ctcacagcac agcaatttgg
ttccaagaaa 360gagcattgta atantgagca tttcaacagt attaacccaa catgcaaaca
ctcactatag 420taagcaaaat aaaataaaat aaagcccccc cccagatatc tatgctctaa
aacttccaaa 480cgtatgaata tgtnacctta aatagcaaaa ggcactntgc agtgtgattn
angcaagatg 540gggcagagtg tctgggaata tccangtgga acccaataat gcaaataaaa
aaaatcnttt 600tataanangg naggtaggaa ntaanacatc tgntcancat taccgctgcc
nggtttttng 660aaaaanaaaa ttnggaagaa aggggccnca agccaaggga atnccaggca
tttcnctaan 720tnggccaaaa caanannatn aaaantcntc ccccnnnnnc cnncnanaaa
aaantgnaac 780cctgggcgnc cncnttgatt tttnnnccca angancctnc ctnaccaana
nantnaaaaa 840aaaatctntt gntcgnnttt nancnaaan
869211874DNACercopithecus aethiopsmisc_feature(1)..(874)n is
a, g, c or t 211tttttngggg atttcccttn tanantnnan cccccccctt anttgggggg
gaaatacnnc 60ccattaacag ttttactcgc agcctctgct tngtctacat ctgctgccaa
cttttaacta 120atggcgagat actttcgcta tttccgatgc cattaggaaa caaatagaaa
aatagtttgg 180caacaacatc ttctcgaata ttatcacttg acaaatttta acgttttagg
tggaaacgga 240attttaannt tttgttttaa gaagcttaaa aaaaacaggc atgcttaatt
agcataatgc 300tgaatggcag ccaatcacaa actgaatttt taaagcnnga agtgtttgct
cctggcgtgg 360cgcgcccgcc tgtaatccgg gaatcccagc gttttgcgag cccacgccca
ggccgaggag 420ggaggatcct ttgttccacg agttcgacac cagcctaggc aatatagcag
aattcagttc 480aatgactcta ggctttagcc atgcagtatt aacaaatggg atattaacaa
tattaacaaa 540tgggataaaa accaagaact tgacaaatgt gttaatttcc tatttctgtt
ttaatacatt 600acacaaaact aactgcctga aaacaaaaca aaagntntta tttttatagt
tctctaaatc 660agaanttttc attggggcnt aaaatcaagg tnntctgcaa ggctgcattc
tttntgnagg 720ctgtagggga naaatttcat tgtccttgnt ngncctttaa naaagcctgt
tttnccttgg 780cttggngncc cctttttcaa ttcattttta aaaccccnan nnnatnngnn
ccnntttctn 840cctccncctc cncnttaaaa nattttttnt gngn
874212866DNACercopithecus aethiopsmisc_feature(1)..(866)n is
a, g, c or t 212annnncnnnn nnnnnnnncc cccngatann ttggggggga aanncncnca
tttgagtgnt 60ncagggcaaa accaacagta aaccagacta ctaaagattt acttgtggaa
tttttttgca 120aagtgtcaaa gggcttatag agaaaatgaa acagttcttt aaagatgttc
ttgagcgagg 180tttttttttt tttaacttac taaaagactt tatgttttag aacagttttt
gtttacgttn 240agcacgtagg acgtccccac tacacacaca gnttctctta ttaatagata
ttagtatggt 300acattngntg caactaatga accagtaatg ataaattatt aactaagatc
catagntnat 360tcctgcttcc tcacattnta tctaaagncc tttntctgnt ccaggatccc
agctaggaga 420tngaaagacc ccacctgnag gttnggcaag ctagctgagg atcgnnncgc
atgatngaac 480aagatggatn gcacgctggn tctccggccg ctngggngga gaggctatnc
ggctatgact 540gggcacaaca gacaancggc tgctctgatg ccgccgngnn ccggctgnca
gcgcaggggc 600gcccggnncn tttnggnaan accgaccngn ccggngcccn gaangaacng
caggacnagg 660canngcggnn atcgnggntg gccacgacgg gcgnnccnng cgcannnggg
cncnacgnng 720nnacngaaac gggaagggna ccggcngnna nngggncaaa angccggggc
aggaaccncn 780gnnaannaaa ccnggnnccn gccnnnaang aaccanaang ggngnnnnaa
agnggngggn 840ngnananccc ngnaaccggn nncccc
866213998DNACercopithecus aethiopsmisc_feature(1)..(998)n is
a, g, c or t 213ttcgggggtc tanaangtnt nntnntncan nccccccccn tttttggggg
gnaannncnn 60nccagtttnn natttggnnn nggagcataa attnagtcgn ctctctcacc
taaaactcat 120ggtctggtgg aggctccgcc tcctttgtcc cctttcatgt ttctgtctca
gcatgcctgg 180ctccttaagg ntcttcatct tttgcaggtt tatctcaagn ctcaattgaa
ccgccncctc 240ctgncaggcn tttttnnnct gggaggtgag cagnngggtc cgggaatgtg
ggagctaagg 300gcatagatgt gaggaccncc ctatgaanag gaaaaggann cnnctggaat
gcanacctgg 360gactgtctgt atacctgcct ggtcactaaa tttctctgag aggcatcaac
agnnaaaanc 420ctganagggt tatngccaag agcatngatg gggtctgctt tctgggangc
agggaataaa 480ggnngtgata cccanaggga ttatntctca gccaggnccc tccttcccnt
gtangannag 540tcccttgagc cnccnnncna ctnancnntn ttttnaatna aacncccctn
tnnncgggac 600aacgggaann tccctatann cctcccannc tnggttgnnn aanncccggn
gctaaaagca 660atcnnncntn nccntnggtc tncacaaaan ggctnagaat naccangttg
nagccccntn 720ntnccctant cccccctgna nnnctatnat ttnttccaan taaccaatna
naccccccan 780aacccannat acancacaac atngaccccc ntcaaaacca acanccnnnt
agacnttntn 840ccnacntnnt aggncatnng cnaaccgnaa gcntttgttn tngaanctan
ccaagggcct 900cncnaacaan ttcaaaaana agtggtgntt cccccancct naaccccgng
cccccacnnt 960caacanannt aaaaannaan acccacnncc nntngtng
998214956DNACercopithecus aethiopsmisc_feature(1)..(956)n is
a, g, c or t 214ttttttcggn ggattnctnn tttnnttnnt tnnncccccc ngttnnttgg
gggggaannc 60cancgttctn nctatttcct tcttgacgag ttnttctgag cgggactctg
gggttcnaaa 120tgagctagcc cttaagtaac gccattttgc aaggcatgga aaaatacata
actgagaata 180gaaaagttca gatcgaggtc aggaacagat ggaacagggt cgaccggtcg
accggtcgac 240cctagagaac nnttttntgt ttccagggtg ccccaaggac ctgaaatgac
cctgtgcctt 300atttgaacta accaatcagt tcgcttctcg cttctgttct ntcgcttctg
ctccccgagc 360tcaataaaag agcccacaac ccctcactcg gggcgccagt cctccgattg
actgagtcgc 420ccgggtaccc gtgtatccaa taaaccctct tgcagttgca tccgacttgt
ggtctcgctg 480ttccttggga gggtctcctc tgagtgattg actacccgtc agcgggggtc
tttcaatctg 540attgcctctt gcttgacggc aaggagtccc gaccactgaa cactgatgac
ctcatctggt 600gtgattgtct cttgcttgac ggcgaggagc cccgacgact gaacatggat
agtcgccgcc 660acagcacggt gatcanaagg ctttcgttcg acttatgant ccgacgntcc
ggggagttca 720agtcgatann cttggcgcct gaggcgacna cnaggcntct naactcaccc
tacccttggg 780aagccccttt tcnactccnt gggncctttt ngtnnttntc ttgnccacct
ttcttgactt 840cttnaanttt gcttctggan tgntaatncn natcnnaaan ccttgtttgn
aaaancntgg 900ccccnggncc cngnttcntt nacccccann tantgnttta ngncccnttt
tggaaa 956215915DNACercopithecus aethiopsmisc_feature(1)..(915)n
is a, g, c or t 215ccncaacctt ngagacccta aagacattgg agcagcccca tacacctcct
cccagggcac 60acaaaggccc ctgacatgcc catggcagtc caaggcctcc aattggagcc
atctttggta 120aatctggggc ccatcagccc ccactgccct tcctggtacc ctgagcatgc
tggcaagggg 180actnnttttt gcatcccatc ttgtntcata tacccacagn acctgatgtg
gacatgactc 240accctggggt cctgtgagtc aataagggtg tntgantaag gggcagagca
tttcaactta 300gtcccataac ccatgagctc attaagcaaa tattacccat gcctagattt
ggggccagtc 360actacccact ggaggctgtg ggctccaagg tatggcagca ggggaggcca
gccaggcntc 420tgcccagctc acccttccct gtgaggatgg acnccagcca ggcctcccac
ctccacccct 480agactggggg acccggggtt ggggggcaag aaaggggacc tgaaagtggn
tgtctnggag 540ntaagcccat ttncttnata ctccnccaat aggganccaa gaaggngggt
tnagagttac 600cccaanaact caccccaacc cantntnaac gctgtggggt ctcaangggg
acangcnaaa 660acnaaaantn anacnggccc aaaaaagaac aggtncggnc ctnccccnan
ggaccttttn 720ttttctacca ccttacccan nanaatnctt gaccaggggc ntttccccaa
acncngnaaa 780anctttcaag cntngncact ntnnanaccc ngggcnnnnn aaggnttagn
gcctcttnnn 840ancnctntgn cnggttncca tngnntaaaa accccaangn aactcctcca
aanaacaagn 900anccnntctn ggttn
915216949DNACercopithecus aethiopsmisc_feature(1)..(949)n is
a, g, c or t 216tttncngngg nanntttntg nggaannctt nncnnccccg gnttttttgg
ggggnaannc 60ncatcgttct tactattgcc ttcttgacga gttnttctga gcgggactct
ggggttcgaa 120atgagctagc ccttaagtaa cgccattttg caaggcatgg aaaaatacat
aactgagaat 180agaaaagttc agatcgaggt caggaacaga tggnacaggg tcgaccggtc
gaccggtcga 240ccctagagaa cctttntatg tttccagggt gccccaagga cctgaaatga
ccctgtgcct 300tatttgaact aaccaatcnn ttcgcttctc gcttctgttc ncgcgcttct
gctccccgag 360ctcaataaaa gagcccacaa cccctcactc ggggcgccag tcctccgatt
gactgagtcg 420cccgggtacc cgtgtatcca ataaaccctc ttgcagttgc atccgacttg
tggtctcgct 480gttccttggg agggtctcct ctgagtgatt gactacccga gtggggaacg
ggggcagggc 540gggtgggagg agggcgcagg aggctgagac agcccaggtg agagagggcc
aagcttgaaa 600ggttttccca ggcttgggga gaggccctgg tcaggatgtg tatgggtaag
gggtgagaga 660cagaggtncn tggggcangc ccggacctgt ttttttngnc cagtntcagt
tctgnttcnc 720ttgnccctga gaccccacgt tcanagaggg ttggnncggt tgnggggnga
cnnttanccc 780catctgatcc catggtggnn ntganganan gggctaannc nnancccntn
cagtcccttn 840ttgcccncac ccgggccccn atcnnggnga agagggagnc cgctcgnccc
ncccccagga 900agggnncngg nanaccggnn gnccccgnng caaccngnaa ccaacnnan
949217999DNACercopithecus aethiopsmisc_feature(1)..(999)n is
a, g, c or t 217ttttcccgng gannnnnntg nnnnttnnnn nttncccccc cccatnnnnc
attggggggg 60aaatnccccc catntaggcc tttnngcnaa agacccagtn ntctgcccct
gggtncccnc 120agganctctg caatggggaa gtgagccctc ctgaggcctg gctggcagga
ggctcttcaa 180ggtcatgtgg acttccccca acacctcgag tttctgcaca gcagccacgg
agacgggcct 240gggggctggc gggaaatttt tnnnaaggca atgtttncct gagtgggctg
aaacctgaga 300tgaggaaatg agaagacgtc aggtggctgg aggacacggg ctttaggaca
gccagcaccc 360agccctgtag ctgaggcctc cggagggagc cagagggaaa gggagtcccc
tccccgcggc 420ctgagtctct gccagtgccc agcactccca aaggatccac cccaacctga
gagaccctaa 480agacattgga gcagccccag acacctcctc ccagggccac aaaggcccct
gacatgccca 540tggcagtcca aggcctncaa ttggagccat cttttggtaa atctggggcc
catcagcccc 600cactgcncct tcctggtacc ctgagcatgc tggcaagggg actggaaact
gcatcccatc 660ttgtctcana tacccacagn acctgatgtg ggacatgact caccctgggg
tcctgtgagt 720caataagggt gtttgantaa ngggcagaac nnttnaactt antnccanaa
acccatgagc 780tcattaannc aaanttaccc tgcctanaat nggggccant nactaccnac
tggaaggttg 840tggcttcang natggntnag ggaagnccnc nggctttccc aannnnncct
tnccttngag 900gnggacccac cagcctccan cncccccnna actgggaacc nngngnggca
anaagggcng 960aaanggtttt gantaaccna tttntanncc cnnggnaaa
999218962DNACercopithecus aethiopsmisc_feature(1)..(962)n is
a, g, c or t 218nnnccccggn actttcnnnt anngnanncc cccccctnat ttggggggna
anncacannn 60ttannnattt nnnnnngaca aagctttttt ccagggnntg aacngcngga
tatttcctnn 120ancaccatag ccgnctatgg gcttccaaat atccctttgc catttccaca
agaactgcct 180tatcgaaagg cttcttgaag ggaaagatgt aactctgnga gatgaatnct
ccagaggaat 240cctggatnnt nnccataggn angnctnaac ctgttcactc cngancttng
ggagggtgca 300cctggaagca agctctgggg tccctgggag agaaagcaca gcccctgccc
tggagacact 360caaagcctgg aagggaaggg cagngggctg gacagagacc acaggtgtga
cggtcctagg 420tgggaggtgg gagctcagag ggggcaccta accccattgg gcagagtgct
canggaaggc 480tttgagtagc gccncagagg atgcngnaga ananccccag gaggagagcg
acngnatgna 540gagggaanag catttaccgn ngcctgggag tgngagaggg ctggcnggag
aaaaaagagc 600tccangaagc cacaaancct cannagnngc gtccacagcn cgatnctcna
ncaccnacaa 660cananccccg ccncatanaa agngcnccaa nccatcnntc acngaangaa
nnaacaaaat 720gaaanaaggg agatcaccna agggaganac gcngacaccc ccccnncccn
accnganaac 780cacnncanaa cntnnacccc gcanaccnaa ganccatgaa ganttnagca
cggnanggcc 840cannnaaaag ncataaanan aacngnagga aaagggaccg gacacccnan
tnactacccc 900cacnnntacc caaaaccaca ncnncngccn gggcgnaacn cccnacnacc
aaccancccc 960ng
962219891DNACercopithecus aethiopsmisc_feature(1)..(891)n is
a, g, c or t 219tttttngggg ntnnnnnggg gnnngnnnnt cccgcctnnc cttngggggn
anncctnnnc 60agttgggaat tnatttaaag aagggactta agggagatta ttaaagagcc
agnaacgcaa 120aggagagctg cggcaatcga caactaccga agacgcgaag cacattcacg
aagcgttccc 180ttcaatccgc acactacact cccacgaccc gccccttccg cccacagagc
ccgccacttc 240cgcctcanan ntnacgcccg ctctgtgctc ctaagggcct tcccgcggct
gatcagacgc 300cccgcccctt agccgcaaca gaagccgtaa agctttctcc cgtcgcgatg
cagcgctcaa 360ggcgcctgcg cagaccctga aaagcggcca gggtggcccc gagcttccct
tttccggttg 420cagcgccgcg cggttaggtt ctctcgttct cgctcgcagc catgccgtcc
aagggcccgc 480tgcagtcggt gcaggtcttc ggacgcaagg tgagctagac gccagatggg
aaggggaggg 540gaaggagaag gtcagggtct gggagaggac ggtgggcagg aatacagggg
gcaacatggg 600agctggatcc cgagctcacg gggccacact ctcttgtatc ccacagaaga
cagccacagc 660tgtggcgcac tgcaaacgcg gcaatggtct catcaaggtg aacgggcggc
ccctggagat 720gattgagccn cgcacgctnc aatacaaggt gnttggcatt gggncattcg
ncgttgantt 780ggattggagg acctntngga nataatagta gctnnttgaa agcttgaggg
ggcnggntnt 840cancanccgg gnttttnana anttngnttn gtntnnnnaa aagggggttt t
891220902DNACercopithecus aethiopsmisc_feature(1)..(902)n is
a, g, c or t 220tttttnnngg nntataattt ganntatnta tcccncccat aaaccttggg
ggggaanaca 60aggnctnaag ttttttagga ttgtgctact gtactccagg gtgagtgaca
gcaagtatac 120tgttcttaaa aaaagaacct tatatattaa aaaaaaattt ttttttaact
gaccctgcaa 180tgcacatatg cttcctttta aaagtagtaa acttcagaag gggcagaaat
cagactctgg 240tttctttcca ttttnagcca aagaaactga nagtnccaaa cagggaacag
aagaacccct 300ttcacaagca agcatttaaa cagacccaaa ttcggccgcg cggctcacca
ggctggtcag 360gagttctaga ccagcctggc cgacatggtg aaaccacgtc tctcctgaaa
atacaaacat 420tagccggccg tggtggtgtg cgcctatagt cccagccacc cgggaggctg
aggcaagaga 480attgcttgaa cccggagggt ggaggttgca gcgatccgag atcgtgccac
tgcactctcc 540agcctgggcg acagagcgag actccctctc aaacaaataa atngaaaaaa
aaataaacag 600acccaaattc aagctatttc aatacttact gagcacttac aatgtctaaa
acgctgcttt 660tagacgcctt ggggttttnt taaggatnaa aacacttgnt ncttngtgaa
aatnaaanct 720atgaaaactg ggtgttcctt caancctttn gggntccccc ccggnttccc
cnnttnaaat 780gaaccttnct aaacattncc aattttnaaa agncancccc nttaattntt
taanacnccc 840ccaatttnaa nnttttaaan tttttntnaa acnntaaanc cccgggtttt
ttttnncnaa 900aa
902221907DNACercopithecus aethiopsmisc_feature(1)..(907)n is
a, g, c or t 221ccncannggt agntccgctc gccttccgcc ttgtaagcng gaaaggtgct
tcgcgaggtc 60tcgccttcgg ggtccgacat ggtgaccgga tttagagacg ctaaagcaga
gacaatcgaa 120gaaaagctgg agaacctcta tctggttctg gtttgtggaa gctccgtctc
ttagcaaccg 180cgagacgann ttttcagcga tttccggttc cgtccctgtc tggcaagggc
ccggattctg 240ggtgcaacct gccggcgtgc gcgtgcgcca gttctntnnn gcaccgggcc
ggagagtgat 300gagtgcgtgg ctggcggctg agctccttag tgtttgctgt tgcacgctcc
ttcggttctc 360tctggagtta ctgcgtgaaa aggctgcctt gtaagacagc caagaaaaca
ggaagagggt 420tggaggcaaa gttccnaata gggattgaaa gaccccacct gtnggttttg
gcaagctagc 480tgaggatcgt tcgcatgatt gaacaagatg gattgcacgc tggtttcttc
ggccgcttgg 540gtggagaggc tatttcggct atgactgggc acacagacat tcggctnctt
ttantgccnc 600cngngtncng gctgtnagcg naggggacgn cccgggttct ttnttgnaaa
gacccnaccg 660ttccggtgcc cttaatnaan ctgnanggac gagnnnancc cngntttatt
ttgntgggcn 720ncaacggncn ttccttnnac anctngntcn ncancnttgt nanttaaccn
gnaanggnnc 780tngntngttt tggncnaaat annccgggca aggaactccn nnnnannccc
ccgtgtnnnt 840ncccacaaan tatcnattng ggtancnaan cngggnnnnn tnaccnnnac
ccgnnnnccg 900ccnanct
907222955DNACercopithecus aethiopsmisc_feature(1)..(955)n is
a, g, c or t 222tttttccggg ggaannnnnn nnggnnnnaa nnnnntcccc nccccatnnn
ccttnggggg 60gnaanacccc nnncaattcc ctatttggna actttgcctc caaccctctt
cctgttttct 120tggctgtctt acaaggcagc cttttcacgc agtaactcca gagagaaccg
aaggagcgtg 180caacagcaaa cactaaggag ctcagccgcc agccacgcac tcatcactct
ccggcccggt 240gcgcggcaga actggcgcac nnttnnnccg gcaggttgca cccagaatcc
gggcccttgc 300cagacaggga cggaaccgga aatcgctgta cgtctcgtct cacggttgct
aagagacgga 360gcttccacaa accagaacca gatagaggtt ctccagcttt tcttcgattg
tctctgcttt 420agcgtctcta aatccggtca ccatgtcgga ccccgaaggc gagacctcgc
gaagcacctt 480tccctcttac atggcggaag gcgagcggct ctacctgtgc ggagaattct
gtgtgaaatt 540gttatccgct cacaattccc acacaacatg agcgtcagac cccgaagaaa
agatcaaagg 600atcttctttg agatcccttt ttttctgcgc gtaatctgct gcttgcaaac
aaaaaaacca 660ccgntaccag cggnggtttt gnttngccgg atcaagagnt accaaantnt
tttttcnnaa 720gnaacttggc ttnagcanaa cccnaanacc aaatactgnc ntttngngta
cccgtantta 780ggccccccct taaaaanttn nnanccncta atanccngtt ttntaatttn
ttacaanggg 840tnttgcnagg gnaaaaattn gttttaccgg ttgnctnaaa aaaattttcc
gaaaggcccn 900ngtnngntaa aggggntctg cccaacccat tgggnnannt ccncccannt
naatc 955223927DNACercopithecus aethiopsmisc_feature(1)..(927)n
is a, g, c or t 223nnnnntttta aanacnnanc ccccccanta ntttgggggg gaaaaccccc
agcatgccca 60cntatcatnn cccatcactg ggtaatattc acagnatcaa attatcctcc
ctaacccagt 120cctgtgaata ttctcattga tcctcaaact cactttggcc tcagtgatcc
ccaacagcct 180cctttacaac cttacaacat ccaagttcct gttctgtgag agtttcctct
cgaaacacaa 240cattccgtac aattcagtct ctcactccgt caatcctcta cattggcagt
gagaccttat 300tttgtgaccc tttactttac agcagccatt tcaaagagac attctctagc
ctgaaagggc 360tccagattct ttcaactttc tattatgtat gcattgccaa tattgaattt
gcactatctt 420atcaactatt ctaaaactac tgacatttgc agaaactggt catttgttct
tagggaaaat 480gtctgtgtta tccaaaaatg gagattaaaa acttgcacac attcctactt
gatttccaca 540gngacctgat ctatggtatc tagcntcctt cccctctgcc ccaagttcac
atttccatca 600gctcatatat actcttccct ttctactcct gctgacaggg tccaaggata
ctgcctcaaa 660aactctataa aaganaataa aaactnatta actggctttn ctatcnaaaa
nctttcnact 720agnaatatta anaaangntt ttcaaccggt nggatccgaa ancatccnaa
gnagggntna 780ngccnaaaaa aaaaataatn nntttccccn aaaaannaaa aaatagnntn
tnangggggc 840ccngnncntn gnaaaagaaa naannccggn cntnnaaana nnannaaaaa
nntccncngg 900nttnannnnn aaaaancatn aancnnn
927224936DNACercopithecus aethiopsmisc_feature(1)..(936)n is
a, g, c or t 224tttttccgng gnanntannn ntttanactt nncccccccc atttcttggg
gggggaanac 60ccccccacag nnccacttcg cggctgccag gcagtcaggc aaagnaggcc
gaagcaaagc 120cctagaagca aagccacagg aataagtcag ctttcccaga ggtcaaagaa
ggctgtaggg 180ccacctgcca cgcctcccga ccccggccgc gcggcctggg cccgctcccc
aaccaaagag 240gcccgaattc agagannttt tagcagtttc acagaaagct tctttccagt
tttgaacgga 300agatatttcc tttttcaccg taggcctcta tgggcttcca aatatccctt
tgccaattcc 360acaagaacag ccttagcgaa aggcttcttg aagggaaaga tgtaactctg
tgaaatgaat 420tctgcttata ggtcttgaga taaagtcacc gatctcatat catggattat
aaggttttcc 480ttctattttc tggcattttg gatatgtaat gatgagcatc agaaagttta
atcatattta 540atttttagaa ttattaaata ctcctgaggt cattttggtt gattttgngt
ggctttcaac 600cataaagaga tcaatgcctt gcagatataa agctttcctt ttccttcttt
aataattnta 660aactctgaat tnatgnctac agatatntaa tngatcataa atganaaatg
ngatactatt 720cnctacctcc ttatctgttc tcggaanaga ctatacancc ctgcaannat
ngaagttnan 780gattgcttnt acgaaannna aaaaaaattn acttnttttt nggcaanana
aaatgcttcc 840tccgttgnna actcccctca nggngtntta gggggnannc taccttnaan
ttccntngnc 900ctggnnncng tnnnaggnan tgcaaanngn tttctt
936225605DNACercopithecus aethiopsmisc_feature(1)..(605)n is
a, g, c or t 225ttttnccnng nnntacnnct tnnnnanttn annccccccc attattttng
gggggaaacc 60tagnaaaaat aatantgtac aagattttat ttttgtcttt aaccagaatg
atgtatttgg 120ttaagaagat agtccaagtt aaaggcatac attcaagcta gtggcacatt
cggaagagca 180gacaaagata gttggttgca aatgggaaat ttaagccatg atcttaaaag
gacagaatgg 240atatttgtta cttttnctat gggaataatt gatttttttc accttccctt
tcttggattt 300tttttttttt ttaaattagt ttggttactt taaccttact gtcggttata
ttggttctct 360ttttatgtct gagttttttt ttttttttga gacggagtct tgctctgtcg
cccaggctgg 420agtgcagtgg ccggatctca gctcactgca agctctgcct cccgggttta
caccattctc 480ctgcctcagc ctnctgagta gctaggacta caggcgcccg ccacctngcc
cggctagttt 540tttgtatttt ttagtagaga cgggtttnna cccnnntnnn ncanatggtt
tnnntctnct 600ntcct
605226654DNACercopithecus aethiopsmisc_feature(1)..(654)n is
a, g, c or t 226tttntngggg nnnnnnnngn attgnnnntc ccccccgtnn nttggggggn
aannccnncc 60antactgttt gaggaaagac tgaggntcag atggcagagg ctccntagag
gaaggaggct 120acagccttga gggcatcagc ttcccacact cccaacctgc tgcctctctc
tgctggaatg 180aggaggggcc tcctggctgg gggtctccag ggtggaggga ggagctcaca
ttcttagcat 240tcctnttncc ctgagttgca aggaagacct ggtgagcatg ctgaccccag
aggagtgact 300caggcccatg gctcgagtgc ctgaggaggg accagggtcg gggatggggc
atgagtcagc 360ctggcaggtc ccataagaag ggaagggaag ggagagaaat gggggctgca
caggtgtgag 420ggtctgtgca tgtctgtgtg gtgtggtggg gtgtctggat atccgngtgt
tctggatctg 480agtgttagtg tatccgncag cacaacctct gtgtgagggt gtgtctnggc
gagggtgggc 540ttctgtggat gtcccntgtg tggnatgtgt gngtgtgtgt gtgngngact
aanntatnnc 600cttcaacnng ggntctnncc caangngnnt ntggatctnc atannatgtc
tctc 6542272635DNAhomo sapiensCDS(285)..(1679) 227ggccgacgcg
agcgccgcgc ttcgcttcag ctgctagctg gcccaaggga ggcgaccgcg 60gagggtggcg
aggggcggcc aggacccgca gccccggggc cgggccggtc cggaccgcca 120gggagggcag
gtcagtgggc agatcgcgtc cgcgggattc aatctctgcc cgctctgata 180acagtccttt
tccctggcgc tcacttcgtg cctggcaccc ggctgggcgc ctcaagaccg 240ttgtctcttc
gatcgcttct ttggacttgg cgaccatttc agag atg tct tcc aga 296
Met Ser Ser Arg
1agt acc aaa gat tta att aaa agt aag tgg gga
tcg aag cct agt aac 344Ser Thr Lys Asp Leu Ile Lys Ser Lys Trp Gly
Ser Lys Pro Ser Asn5 10 15
20tcc aaa tcc gaa act aca tta gaa aaa tta aag gga gaa att gca cac
392Ser Lys Ser Glu Thr Thr Leu Glu Lys Leu Lys Gly Glu Ile Ala His
25 30 35tta aag aca tca gtg
gat gaa atc aca agt ggg aaa gga aag ctg act 440Leu Lys Thr Ser Val
Asp Glu Ile Thr Ser Gly Lys Gly Lys Leu Thr 40
45 50gat aaa gag aga cac aga ctt ttg gag aaa att cga
gtc ctt gag gct 488Asp Lys Glu Arg His Arg Leu Leu Glu Lys Ile Arg
Val Leu Glu Ala 55 60 65gag aag
gag aag aat gct tat caa ctc aca gag aag gac aaa gaa ata 536Glu Lys
Glu Lys Asn Ala Tyr Gln Leu Thr Glu Lys Asp Lys Glu Ile 70
75 80cag cga ctg aga gac caa ctg aag gcc aga tat
agt act acc gca ttg 584Gln Arg Leu Arg Asp Gln Leu Lys Ala Arg Tyr
Ser Thr Thr Ala Leu85 90 95
100ctt gaa cag ctg gaa gag aca acg aga gaa gga gaa agg agg gag cag
632Leu Glu Gln Leu Glu Glu Thr Thr Arg Glu Gly Glu Arg Arg Glu Gln
105 110 115gtg ttg aaa gcc tta
tct gaa gag aaa gac gta ttg aaa caa cag ttg 680Val Leu Lys Ala Leu
Ser Glu Glu Lys Asp Val Leu Lys Gln Gln Leu 120
125 130tct gct gca acc tca cga att gct gaa ctt gaa agc
aaa acc aat aca 728Ser Ala Ala Thr Ser Arg Ile Ala Glu Leu Glu Ser
Lys Thr Asn Thr 135 140 145ctc cgt
tta tca cag act gtg gct cca aac tgc ttc aac tca tca ata 776Leu Arg
Leu Ser Gln Thr Val Ala Pro Asn Cys Phe Asn Ser Ser Ile 150
155 160aat aat att cat gaa atg gaa ata cag ctg aaa
gat gct ctg gag aaa 824Asn Asn Ile His Glu Met Glu Ile Gln Leu Lys
Asp Ala Leu Glu Lys165 170 175
180aat cag cag tgg ctc gtg tat gat cag cag cgg gaa gtc tat gta aaa
872Asn Gln Gln Trp Leu Val Tyr Asp Gln Gln Arg Glu Val Tyr Val Lys
185 190 195gga ctt tta gca aag
atc ttt gag ttg gaa aag aaa acg gaa aca gct 920Gly Leu Leu Ala Lys
Ile Phe Glu Leu Glu Lys Lys Thr Glu Thr Ala 200
205 210gct cat tca ctc cca cag cag aca aaa aag cct gaa
tca gaa ggt tat 968Ala His Ser Leu Pro Gln Gln Thr Lys Lys Pro Glu
Ser Glu Gly Tyr 215 220 225ctt caa
gaa gag aag cag aaa tgt tac aac gat ctc ttg gca agt gca 1016Leu Gln
Glu Glu Lys Gln Lys Cys Tyr Asn Asp Leu Leu Ala Ser Ala 230
235 240aaa aaa gat ctt gag gtt gaa cga caa acc ata
act cag ctg agt ttt 1064Lys Lys Asp Leu Glu Val Glu Arg Gln Thr Ile
Thr Gln Leu Ser Phe245 250 255
260gaa ctg agt gaa ttt cga aga aaa tat gaa gaa acc caa aaa gaa gtt
1112Glu Leu Ser Glu Phe Arg Arg Lys Tyr Glu Glu Thr Gln Lys Glu Val
265 270 275cac aat tta aat cag
ctg ttg tat tca caa aga agg gca gat gtg caa 1160His Asn Leu Asn Gln
Leu Leu Tyr Ser Gln Arg Arg Ala Asp Val Gln 280
285 290cat ctg gaa gat gat agg cat aaa aca gag aag ata
caa aaa ctc agg 1208His Leu Glu Asp Asp Arg His Lys Thr Glu Lys Ile
Gln Lys Leu Arg 295 300 305gaa gag
aat gat att gct agg gga aaa ctt gaa gaa gag aag aag aga 1256Glu Glu
Asn Asp Ile Ala Arg Gly Lys Leu Glu Glu Glu Lys Lys Arg 310
315 320tcc gaa gag ctc tta tct cag gtc cag ttt ctt
tac aca tct ctg cta 1304Ser Glu Glu Leu Leu Ser Gln Val Gln Phe Leu
Tyr Thr Ser Leu Leu325 330 335
340aag cag caa gaa gaa caa aca agg gta gct ctg ttg gaa caa cag atg
1352Lys Gln Gln Glu Glu Gln Thr Arg Val Ala Leu Leu Glu Gln Gln Met
345 350 355cag gca tgt act tta
gac ttt gaa aat gaa aaa ctc gac cgt caa cat 1400Gln Ala Cys Thr Leu
Asp Phe Glu Asn Glu Lys Leu Asp Arg Gln His 360
365 370gtg cag cat caa ttg ctt gta att ctt aag gag ctc
cga aaa gca aga 1448Val Gln His Gln Leu Leu Val Ile Leu Lys Glu Leu
Arg Lys Ala Arg 375 380 385aat caa
ata aca cag ttg gaa tcc ttg aaa cag ctt cat gag ttt gcc 1496Asn Gln
Ile Thr Gln Leu Glu Ser Leu Lys Gln Leu His Glu Phe Ala 390
395 400atc aca gag cca tta gtc act ttc caa gga gag
act gaa aac aga gaa 1544Ile Thr Glu Pro Leu Val Thr Phe Gln Gly Glu
Thr Glu Asn Arg Glu405 410 415
420aaa gtt gcc gcc tca cca aaa agt ccc act gct gca ctc aat gaa agc
1592Lys Val Ala Ala Ser Pro Lys Ser Pro Thr Ala Ala Leu Asn Glu Ser
425 430 435ctg gtg gaa tgt ccc
aag tgc aat ata cag tat cca gcc act gag cat 1640Leu Val Glu Cys Pro
Lys Cys Asn Ile Gln Tyr Pro Ala Thr Glu His 440
445 450cgc gat ctg ctt gtc cat gtg gaa tac tgt tca aag
tag caaaataagt 1689Arg Asp Leu Leu Val His Val Glu Tyr Cys Ser Lys
455 460atttgttttg atattaaaag attcaatact gtattttctg
ttagcttgtg ggcattttga 1749attatatatt tcacattttg cataaaactg cctatctacc
tttgacactc cagcatgcta 1809gtgaatcatg tatcttttag gctgctgtgc atttctcttg
gcagtgatac ctccctgaca 1869tggttcatca tcaggctgca atgacagaat gtggtgagca
gcgtctactg agactactaa 1929cattttgcac tgtcaaaata cttggtgagg aaaagatagc
tcaggttatt gctaatgggt 1989taatgcacca gcaagcaaaa tattttatgt tttgggggtt
tgaaaaatca aagataatta 2049accaaggatc ttaactgtgt tcgcattttt tatccaagca
cttagaaaac ctacaatcct 2109aattttgatg tccattgtta agaggtggtg atagatacta
tttttttttt catattgtat 2169agcggttatt agaaaagttg gggattttct tgatctttat
tgctgcttac cattgaaact 2229taacccagct gtgttcccca actctgttct gcgcacgaaa
cagtatctgt ttgaggcata 2289atcttaagtg gccacacaca atgttttctc ttatgttatc
tggcagtaac tgtaacttga 2349attacattag cacattctgc ttagctaaaa ttgttaaaat
aaactttaat aaacccatgt 2409agccctctca tttgattgac agtattttag ttatttttgg
cattcttaaa gctgggcaat 2469gtaatgatca gatctttgtt tgtctgaaca ggtattttta
tacatgcttt ttgtaaacca 2529aaaactttta aatttcttca ggttttctaa catgcttacc
actgggctac tgtaaatgag 2589aaaagaataa aattatttaa tgttttaaaa aaaaaaaaaa
aaaaaa 2635228464PRThomo sapiens 228Met Ser Ser Arg Ser
Thr Lys Asp Leu Ile Lys Ser Lys Trp Gly Ser1 5
10 15Lys Pro Ser Asn Ser Lys Ser Glu Thr Thr Leu
Glu Lys Leu Lys Gly 20 25
30Glu Ile Ala His Leu Lys Thr Ser Val Asp Glu Ile Thr Ser Gly Lys
35 40 45Gly Lys Leu Thr Asp Lys Glu Arg
His Arg Leu Leu Glu Lys Ile Arg 50 55
60Val Leu Glu Ala Glu Lys Glu Lys Asn Ala Tyr Gln Leu Thr Glu Lys65
70 75 80Asp Lys Glu Ile Gln
Arg Leu Arg Asp Gln Leu Lys Ala Arg Tyr Ser 85
90 95Thr Thr Ala Leu Leu Glu Gln Leu Glu Glu Thr
Thr Arg Glu Gly Glu 100 105
110Arg Arg Glu Gln Val Leu Lys Ala Leu Ser Glu Glu Lys Asp Val Leu
115 120 125Lys Gln Gln Leu Ser Ala Ala
Thr Ser Arg Ile Ala Glu Leu Glu Ser 130 135
140Lys Thr Asn Thr Leu Arg Leu Ser Gln Thr Val Ala Pro Asn Cys
Phe145 150 155 160Asn Ser
Ser Ile Asn Asn Ile His Glu Met Glu Ile Gln Leu Lys Asp
165 170 175Ala Leu Glu Lys Asn Gln Gln
Trp Leu Val Tyr Asp Gln Gln Arg Glu 180 185
190Val Tyr Val Lys Gly Leu Leu Ala Lys Ile Phe Glu Leu Glu
Lys Lys 195 200 205Thr Glu Thr Ala
Ala His Ser Leu Pro Gln Gln Thr Lys Lys Pro Glu 210
215 220Ser Glu Gly Tyr Leu Gln Glu Glu Lys Gln Lys Cys
Tyr Asn Asp Leu225 230 235
240Leu Ala Ser Ala Lys Lys Asp Leu Glu Val Glu Arg Gln Thr Ile Thr
245 250 255Gln Leu Ser Phe Glu
Leu Ser Glu Phe Arg Arg Lys Tyr Glu Glu Thr 260
265 270Gln Lys Glu Val His Asn Leu Asn Gln Leu Leu Tyr
Ser Gln Arg Arg 275 280 285Ala Asp
Val Gln His Leu Glu Asp Asp Arg His Lys Thr Glu Lys Ile 290
295 300Gln Lys Leu Arg Glu Glu Asn Asp Ile Ala Arg
Gly Lys Leu Glu Glu305 310 315
320Glu Lys Lys Arg Ser Glu Glu Leu Leu Ser Gln Val Gln Phe Leu Tyr
325 330 335Thr Ser Leu Leu
Lys Gln Gln Glu Glu Gln Thr Arg Val Ala Leu Leu 340
345 350Glu Gln Gln Met Gln Ala Cys Thr Leu Asp Phe
Glu Asn Glu Lys Leu 355 360 365Asp
Arg Gln His Val Gln His Gln Leu Leu Val Ile Leu Lys Glu Leu 370
375 380Arg Lys Ala Arg Asn Gln Ile Thr Gln Leu
Glu Ser Leu Lys Gln Leu385 390 395
400His Glu Phe Ala Ile Thr Glu Pro Leu Val Thr Phe Gln Gly Glu
Thr 405 410 415Glu Asn Arg
Glu Lys Val Ala Ala Ser Pro Lys Ser Pro Thr Ala Ala 420
425 430Leu Asn Glu Ser Leu Val Glu Cys Pro Lys
Cys Asn Ile Gln Tyr Pro 435 440
445Ala Thr Glu His Arg Asp Leu Leu Val His Val Glu Tyr Cys Ser Lys 450
455 4602292635DNAhomo
sapiensCDS(285)..(1679) 229ggccgacgcg agcgccgcgc ttcgcttcag ctgctagctg
gcccaaggga ggcgaccgcg 60gagggtggcg aggggcggcc aggacccgca gccccggggc
cgggccggtc cggaccgcca 120gggagggcag gtcagtgggc agatcgcgtc cgcgggattc
aatctctgcc cgctctgata 180acagtccttt tccctggcgc tcacttcgtg cctggcaccc
ggctgggcgc ctcaagaccg 240ttgtctcttc gatcgcttct ttggacttgg cgaccatttc
agag atg tct tcc aga 296
Met Ser Ser Arg 1agt
acc aaa gat tta att aaa agt aag tgg gga tcg aag cct agt aac 344Ser
Thr Lys Asp Leu Ile Lys Ser Lys Trp Gly Ser Lys Pro Ser Asn5
10 15 20tcc aaa tcc gaa act aca
tta gaa aaa tta aag gga gaa att gca cac 392Ser Lys Ser Glu Thr Thr
Leu Glu Lys Leu Lys Gly Glu Ile Ala His 25
30 35tta aag aca tca gtg gat gaa atc aca agt ggg aaa
gga aag ctg act 440Leu Lys Thr Ser Val Asp Glu Ile Thr Ser Gly Lys
Gly Lys Leu Thr 40 45 50gat
aaa gag aga cac aga ctt ttg gag aaa att cga gtc ctt gag gct 488Asp
Lys Glu Arg His Arg Leu Leu Glu Lys Ile Arg Val Leu Glu Ala 55
60 65gag aag gag aag aat gct tat caa ctc
aca gag aag gac aaa gaa ata 536Glu Lys Glu Lys Asn Ala Tyr Gln Leu
Thr Glu Lys Asp Lys Glu Ile 70 75
80cag cga ctg aga gac caa ctg aag gcc aga tat agt act acc gca ttg
584Gln Arg Leu Arg Asp Gln Leu Lys Ala Arg Tyr Ser Thr Thr Ala Leu85
90 95 100ctt gaa cag ctg
gaa gag aca acg aga gaa gga gaa agg agg gag cag 632Leu Glu Gln Leu
Glu Glu Thr Thr Arg Glu Gly Glu Arg Arg Glu Gln 105
110 115gtg ttg aaa gcc tta tct gaa gag aaa gac
gta ttg aaa caa cag ttg 680Val Leu Lys Ala Leu Ser Glu Glu Lys Asp
Val Leu Lys Gln Gln Leu 120 125
130tct gct gca acc tca cga att gct gaa ctt gaa agc aaa acc aat aca
728Ser Ala Ala Thr Ser Arg Ile Ala Glu Leu Glu Ser Lys Thr Asn Thr
135 140 145ctc cgt tta tca cag act gtg
gct cca aac tgc ttc aac tca tca ata 776Leu Arg Leu Ser Gln Thr Val
Ala Pro Asn Cys Phe Asn Ser Ser Ile 150 155
160aat aat att cat gaa atg gaa ata cag ctg aaa gat gct ctg gag aaa
824Asn Asn Ile His Glu Met Glu Ile Gln Leu Lys Asp Ala Leu Glu Lys165
170 175 180aat cag cag tgg
ctc gtg tat gat cag cag cgg gaa gtc tat gta aaa 872Asn Gln Gln Trp
Leu Val Tyr Asp Gln Gln Arg Glu Val Tyr Val Lys 185
190 195gga ctt tta gca aag atc ttt gag ttg gaa
aag aaa acg gaa aca gct 920Gly Leu Leu Ala Lys Ile Phe Glu Leu Glu
Lys Lys Thr Glu Thr Ala 200 205
210gct cat tca ctc cca cag cag aca aaa aag cct gaa tca gaa ggt tat
968Ala His Ser Leu Pro Gln Gln Thr Lys Lys Pro Glu Ser Glu Gly Tyr
215 220 225ctt caa gaa gag aag cag aaa
tgt tac aac gat ctc ttg gca agt gca 1016Leu Gln Glu Glu Lys Gln Lys
Cys Tyr Asn Asp Leu Leu Ala Ser Ala 230 235
240aaa aaa gat ctt gag gtt gaa cga caa acc ata act cag ctg agt ttt
1064Lys Lys Asp Leu Glu Val Glu Arg Gln Thr Ile Thr Gln Leu Ser Phe245
250 255 260gaa ctg agt gaa
ttt cga aga aaa tat gaa gaa acc caa aaa gaa gtt 1112Glu Leu Ser Glu
Phe Arg Arg Lys Tyr Glu Glu Thr Gln Lys Glu Val 265
270 275cac aat tta aat cag ctg ttg tat tca caa
aga agg gca gat gtg caa 1160His Asn Leu Asn Gln Leu Leu Tyr Ser Gln
Arg Arg Ala Asp Val Gln 280 285
290cat ctg gaa gat gat agg cat aaa aca gag aag ata caa aaa ctc agg
1208His Leu Glu Asp Asp Arg His Lys Thr Glu Lys Ile Gln Lys Leu Arg
295 300 305gaa gag aat gat att gct agg
gga aaa ctt gaa gaa gag aag aag aga 1256Glu Glu Asn Asp Ile Ala Arg
Gly Lys Leu Glu Glu Glu Lys Lys Arg 310 315
320tcc gaa gag ctc tta tct cag gtc cag ttt ctt tac aca tct ctg cta
1304Ser Glu Glu Leu Leu Ser Gln Val Gln Phe Leu Tyr Thr Ser Leu Leu325
330 335 340aag cag caa gaa
gaa caa aca agg gta gct ctg ttg gaa caa cag atg 1352Lys Gln Gln Glu
Glu Gln Thr Arg Val Ala Leu Leu Glu Gln Gln Met 345
350 355cag gca tgt act tta gac ttt gaa aat gaa
aaa ctc gac cgt caa cat 1400Gln Ala Cys Thr Leu Asp Phe Glu Asn Glu
Lys Leu Asp Arg Gln His 360 365
370gtg cag cat caa ttg ctt gta att ctt aag gag ctc cga aaa gca aga
1448Val Gln His Gln Leu Leu Val Ile Leu Lys Glu Leu Arg Lys Ala Arg
375 380 385aat caa ata aca cag ttg gaa
tcc ttg aaa cag ctt cat gag ttt gcc 1496Asn Gln Ile Thr Gln Leu Glu
Ser Leu Lys Gln Leu His Glu Phe Ala 390 395
400atc aca gag cca tta gtc act ttc caa gga gag act gaa aac aga gaa
1544Ile Thr Glu Pro Leu Val Thr Phe Gln Gly Glu Thr Glu Asn Arg Glu405
410 415 420aaa gtt gcc gcc
tca cca aaa agt ccc act gct gca ctc aat gaa agc 1592Lys Val Ala Ala
Ser Pro Lys Ser Pro Thr Ala Ala Leu Asn Glu Ser 425
430 435ctg gtg gaa tgt ccc aag tgc aat ata cag
tat cca gcc act gag cat 1640Leu Val Glu Cys Pro Lys Cys Asn Ile Gln
Tyr Pro Ala Thr Glu His 440 445
450cgc gat ctg ctt gtc cat gtg gaa tac tgt tca aag tag caaaataagt
1689Arg Asp Leu Leu Val His Val Glu Tyr Cys Ser Lys 455
460atttgttttg atattaaaag attcaatact gtattttctg ttagcttgtg ggcattttga
1749attatatatt tcacattttg cataaaactg cctatctacc tttgacactc cagcatgcta
1809gtgaatcatg tatcttttag gctgctgtgc atttctcttg gcagtgatac ctccctgaca
1869tggttcatca tcaggctgca atgacagaat gtggtgagca gcgtctactg agactactaa
1929cattttgcac tgtcaaaata cttggtgagg aaaagatagc tcaggttatt gctaatgggt
1989taatgcacca gcaagcaaaa tattttatgt tttgggggtt tgaaaaatca aagataatta
2049accaaggatc ttaactgtgt tcgcattttt tatccaagca cttagaaaac ctacaatcct
2109aattttgatg tccattgtta agaggtggtg atagatacta tttttttttt catattgtat
2169agcggttatt agaaaagttg gggattttct tgatctttat tgctgcttac cattgaaact
2229taacccagct gtgttcccca actctgttct gcgcacgaaa cagtatctgt ttgaggcata
2289atcttaagtg gccacacaca atgttttctc ttatgttatc tggcagtaac tgtaacttga
2349attacattag cacattctgc ttagctaaaa ttgttaaaat aaactttaat aaacccatgt
2409agccctctca tttgattgac agtattttag ttatttttgg cattcttaaa gctgggcaat
2469gtaatgatca gatctttgtt tgtctgaaca ggtattttta tacatgcttt ttgtaaacca
2529aaaactttta aatttcttca ggttttctaa catgcttacc actgggctac tgtaaatgag
2589aaaagaataa aattatttaa tgttttaaaa aaaaaaaaaa aaaaaa
2635230464PRThomo sapiens 230Met Ser Ser Arg Ser Thr Lys Asp Leu Ile Lys
Ser Lys Trp Gly Ser1 5 10
15Lys Pro Ser Asn Ser Lys Ser Glu Thr Thr Leu Glu Lys Leu Lys Gly
20 25 30Glu Ile Ala His Leu Lys Thr
Ser Val Asp Glu Ile Thr Ser Gly Lys 35 40
45Gly Lys Leu Thr Asp Lys Glu Arg His Arg Leu Leu Glu Lys Ile
Arg 50 55 60Val Leu Glu Ala Glu Lys
Glu Lys Asn Ala Tyr Gln Leu Thr Glu Lys65 70
75 80Asp Lys Glu Ile Gln Arg Leu Arg Asp Gln Leu
Lys Ala Arg Tyr Ser 85 90
95Thr Thr Ala Leu Leu Glu Gln Leu Glu Glu Thr Thr Arg Glu Gly Glu
100 105 110Arg Arg Glu Gln Val Leu
Lys Ala Leu Ser Glu Glu Lys Asp Val Leu 115 120
125Lys Gln Gln Leu Ser Ala Ala Thr Ser Arg Ile Ala Glu Leu
Glu Ser 130 135 140Lys Thr Asn Thr Leu
Arg Leu Ser Gln Thr Val Ala Pro Asn Cys Phe145 150
155 160Asn Ser Ser Ile Asn Asn Ile His Glu Met
Glu Ile Gln Leu Lys Asp 165 170
175Ala Leu Glu Lys Asn Gln Gln Trp Leu Val Tyr Asp Gln Gln Arg Glu
180 185 190Val Tyr Val Lys Gly
Leu Leu Ala Lys Ile Phe Glu Leu Glu Lys Lys 195
200 205Thr Glu Thr Ala Ala His Ser Leu Pro Gln Gln Thr
Lys Lys Pro Glu 210 215 220Ser Glu Gly
Tyr Leu Gln Glu Glu Lys Gln Lys Cys Tyr Asn Asp Leu225
230 235 240Leu Ala Ser Ala Lys Lys Asp
Leu Glu Val Glu Arg Gln Thr Ile Thr 245
250 255Gln Leu Ser Phe Glu Leu Ser Glu Phe Arg Arg Lys
Tyr Glu Glu Thr 260 265 270Gln
Lys Glu Val His Asn Leu Asn Gln Leu Leu Tyr Ser Gln Arg Arg 275
280 285Ala Asp Val Gln His Leu Glu Asp Asp
Arg His Lys Thr Glu Lys Ile 290 295
300Gln Lys Leu Arg Glu Glu Asn Asp Ile Ala Arg Gly Lys Leu Glu Glu305
310 315 320Glu Lys Lys Arg
Ser Glu Glu Leu Leu Ser Gln Val Gln Phe Leu Tyr 325
330 335Thr Ser Leu Leu Lys Gln Gln Glu Glu Gln
Thr Arg Val Ala Leu Leu 340 345
350Glu Gln Gln Met Gln Ala Cys Thr Leu Asp Phe Glu Asn Glu Lys Leu
355 360 365Asp Arg Gln His Val Gln His
Gln Leu Leu Val Ile Leu Lys Glu Leu 370 375
380Arg Lys Ala Arg Asn Gln Ile Thr Gln Leu Glu Ser Leu Lys Gln
Leu385 390 395 400His Glu
Phe Ala Ile Thr Glu Pro Leu Val Thr Phe Gln Gly Glu Thr
405 410 415Glu Asn Arg Glu Lys Val Ala
Ala Ser Pro Lys Ser Pro Thr Ala Ala 420 425
430Leu Asn Glu Ser Leu Val Glu Cys Pro Lys Cys Asn Ile Gln
Tyr Pro 435 440 445Ala Thr Glu His
Arg Asp Leu Leu Val His Val Glu Tyr Cys Ser Lys 450
455 4602316829DNAHOMO SAPIENSCDS(89)..(6274)
231cttctctccc agggcggtgc gacccggagc tccagcgccc gagtctccac ttcgtttgct
60gaaacttgct ttctaccagc taagaacc atg ctg cga gtg att gtg gaa tct
112 Met Leu Arg Val Ile Val Glu Ser
1 5gcc agc aat atc cct aaa acg aaa
ttt ggc aag ccg gat cct att gtt 160Ala Ser Asn Ile Pro Lys Thr Lys
Phe Gly Lys Pro Asp Pro Ile Val 10 15
20tct gtc att ttt aag gat gag aaa aag aaa aca aag aaa gtt gat aat
208Ser Val Ile Phe Lys Asp Glu Lys Lys Lys Thr Lys Lys Val Asp Asn25
30 35 40gaa ttg aac cct gtc
tgg aat gag att ttg gag ttt gac ttg agg ggt 256Glu Leu Asn Pro Val
Trp Asn Glu Ile Leu Glu Phe Asp Leu Arg Gly 45
50 55ata cca ctg gac ttt tca tct tcc ctt ggg att
att gtg aaa gat ttt 304Ile Pro Leu Asp Phe Ser Ser Ser Leu Gly Ile
Ile Val Lys Asp Phe 60 65
70gag aca att gga caa aat aaa tta att ggc acg gcg act gta gcc ctg
352Glu Thr Ile Gly Gln Asn Lys Leu Ile Gly Thr Ala Thr Val Ala Leu
75 80 85aag gac ctg act ggt gac cag agc
aga tcc ctg ccg tac aag ctg atc 400Lys Asp Leu Thr Gly Asp Gln Ser
Arg Ser Leu Pro Tyr Lys Leu Ile 90 95
100tcc ctg cta aat gaa aaa ggg caa gat act ggg gcc acc att gac ttg
448Ser Leu Leu Asn Glu Lys Gly Gln Asp Thr Gly Ala Thr Ile Asp Leu105
110 115 120gtg atc ggc tat
gat ccg cct tct gct cca cat cca aat gac ctg agc 496Val Ile Gly Tyr
Asp Pro Pro Ser Ala Pro His Pro Asn Asp Leu Ser 125
130 135ggg ccc agc gtg cca ggc atg gga gga gat
ggg gaa gaa gat gaa ggt 544Gly Pro Ser Val Pro Gly Met Gly Gly Asp
Gly Glu Glu Asp Glu Gly 140 145
150gat gaa gac agg ttg gac aat gca gtc agg ggc cct ggg ccc aag ggg
592Asp Glu Asp Arg Leu Asp Asn Ala Val Arg Gly Pro Gly Pro Lys Gly
155 160 165cca gtt ggg acg gtg tcg gaa
gct cag ctt gct cgg agg ctc acc aaa 640Pro Val Gly Thr Val Ser Glu
Ala Gln Leu Ala Arg Arg Leu Thr Lys 170 175
180gta aag aac agc cgg cgg atg ctg tca aat aag cca cag gac ttc cag
688Val Lys Asn Ser Arg Arg Met Leu Ser Asn Lys Pro Gln Asp Phe Gln185
190 195 200atc cgc gtc cga
gtg att gag ggc cga cag tta agt ggt aac aac ata 736Ile Arg Val Arg
Val Ile Glu Gly Arg Gln Leu Ser Gly Asn Asn Ile 205
210 215agg cct gtg gtc aaa gtt cac gtc tgt ggc
cag aca cac cga aca aga 784Arg Pro Val Val Lys Val His Val Cys Gly
Gln Thr His Arg Thr Arg 220 225
230atc aag aga gga aac aac cct ttt ttt gat gag ttg ttt ttc tac aat
832Ile Lys Arg Gly Asn Asn Pro Phe Phe Asp Glu Leu Phe Phe Tyr Asn
235 240 245gtc aac atg acc cct tct gaa
ttg atg gat gag atc atc agc atc cgg 880Val Asn Met Thr Pro Ser Glu
Leu Met Asp Glu Ile Ile Ser Ile Arg 250 255
260gtt tat aat tct cac tct ctg cgg gca gat tgt ctg atg ggg gaa ttt
928Val Tyr Asn Ser His Ser Leu Arg Ala Asp Cys Leu Met Gly Glu Phe265
270 275 280aag att gat gtt
gga ttt gtt tat gat gaa cct ggc cat gct gtc atg 976Lys Ile Asp Val
Gly Phe Val Tyr Asp Glu Pro Gly His Ala Val Met 285
290 295aga aag tgg ctt ctt ctc aat gac ccg gaa
gat acc agt tca ggt tct 1024Arg Lys Trp Leu Leu Leu Asn Asp Pro Glu
Asp Thr Ser Ser Gly Ser 300 305
310aaa ggt tat atg aaa gtc agc atg ttt gtc ctg gga acc gga gat gag
1072Lys Gly Tyr Met Lys Val Ser Met Phe Val Leu Gly Thr Gly Asp Glu
315 320 325cct cct cct gag aga cga gat
cgt gat aat gac agt gat gat gtg gag 1120Pro Pro Pro Glu Arg Arg Asp
Arg Asp Asn Asp Ser Asp Asp Val Glu 330 335
340agt aat ttg tta ctc cct gct ggc att gcc ctc cgg tgg gtg acc ttc
1168Ser Asn Leu Leu Leu Pro Ala Gly Ile Ala Leu Arg Trp Val Thr Phe345
350 355 360ttg ctg aaa atc
tac cga gct gag gac atc ccc cag atg gat gat gcc 1216Leu Leu Lys Ile
Tyr Arg Ala Glu Asp Ile Pro Gln Met Asp Asp Ala 365
370 375ttc tca cag aca gta aag gaa ata ttt gga
ggc aat gca gat aag aaa 1264Phe Ser Gln Thr Val Lys Glu Ile Phe Gly
Gly Asn Ala Asp Lys Lys 380 385
390aat ctc gtg gat cct ttt gta gaa gtt tcc ttt gct gga aaa aag gtt
1312Asn Leu Val Asp Pro Phe Val Glu Val Ser Phe Ala Gly Lys Lys Val
395 400 405tgt aca aac ata att gag aaa
aat gca aac cca gag tgg aat cag gtc 1360Cys Thr Asn Ile Ile Glu Lys
Asn Ala Asn Pro Glu Trp Asn Gln Val 410 415
420gtc aat ctt cag atc aag ttt cct tca gtg tgt gaa aaa ata aaa cta
1408Val Asn Leu Gln Ile Lys Phe Pro Ser Val Cys Glu Lys Ile Lys Leu425
430 435 440aca ata tat gac
tgg gac cgt ctt act aaa aat gat gta gtt gga aca 1456Thr Ile Tyr Asp
Trp Asp Arg Leu Thr Lys Asn Asp Val Val Gly Thr 445
450 455aca tat cta cac ctc tct aaa att gct gcc
tct ggt ggg gaa gtg gaa 1504Thr Tyr Leu His Leu Ser Lys Ile Ala Ala
Ser Gly Gly Glu Val Glu 460 465
470gat ttc tca tct tcg gga act ggg gct gca tca tat aca gta aac aca
1552Asp Phe Ser Ser Ser Gly Thr Gly Ala Ala Ser Tyr Thr Val Asn Thr
475 480 485gga gaa aca gag gta ggc ttt
gtt cca acg ttt gga cct tgt tac ctg 1600Gly Glu Thr Glu Val Gly Phe
Val Pro Thr Phe Gly Pro Cys Tyr Leu 490 495
500aat ctt tat gga agc ccc agg gag tac acg gga ttc cca gac ccc tat
1648Asn Leu Tyr Gly Ser Pro Arg Glu Tyr Thr Gly Phe Pro Asp Pro Tyr505
510 515 520gat gag ctg aat
act gga aag ggg gaa gga gtt gcc tac aga ggc agg 1696Asp Glu Leu Asn
Thr Gly Lys Gly Glu Gly Val Ala Tyr Arg Gly Arg 525
530 535atc ttg gtt gaa tta gcc act ttt ctt gag
aag aca cca cca gat aaa 1744Ile Leu Val Glu Leu Ala Thr Phe Leu Glu
Lys Thr Pro Pro Asp Lys 540 545
550aag ctt gag ccc att tca aat gat gac ctg ctg gtt gtt gag aaa tac
1792Lys Leu Glu Pro Ile Ser Asn Asp Asp Leu Leu Val Val Glu Lys Tyr
555 560 565cag cga agg cgg aag tac agc
ctg tct gcc gtg ttt cat tca gcc acc 1840Gln Arg Arg Arg Lys Tyr Ser
Leu Ser Ala Val Phe His Ser Ala Thr 570 575
580atg ttg caa gat gtt ggt gag gcc att cag ttt gaa gtc agc att ggg
1888Met Leu Gln Asp Val Gly Glu Ala Ile Gln Phe Glu Val Ser Ile Gly585
590 595 600aac tat ggc aac
aag ttt gac acc acc tgt aag cct ttg gca tca aca 1936Asn Tyr Gly Asn
Lys Phe Asp Thr Thr Cys Lys Pro Leu Ala Ser Thr 605
610 615act cag tac agc cgt gct gta ttt gat ggc
aac tac tat tat tac ttg 1984Thr Gln Tyr Ser Arg Ala Val Phe Asp Gly
Asn Tyr Tyr Tyr Tyr Leu 620 625
630cct tgg gcc cac acc aag cca gtt gtt acc ctg act tca tac tgg gag
2032Pro Trp Ala His Thr Lys Pro Val Val Thr Leu Thr Ser Tyr Trp Glu
635 640 645gat att agt cat cgc ctg gat
gcg gtg aac act ctc cta gct atg gca 2080Asp Ile Ser His Arg Leu Asp
Ala Val Asn Thr Leu Leu Ala Met Ala 650 655
660gaa cgg ctg caa aca aat ata gaa gct cta aaa tca ggg ata caa ggt
2128Glu Arg Leu Gln Thr Asn Ile Glu Ala Leu Lys Ser Gly Ile Gln Gly665
670 675 680aaa att cct gca
aac cag ctg gct gaa ttg tgg ctg aag ctg ata gat 2176Lys Ile Pro Ala
Asn Gln Leu Ala Glu Leu Trp Leu Lys Leu Ile Asp 685
690 695gaa gtt ata gaa gac acg aga tac acg ttg
cct ctc aca gaa gga aaa 2224Glu Val Ile Glu Asp Thr Arg Tyr Thr Leu
Pro Leu Thr Glu Gly Lys 700 705
710gcc aac gtc aca gtt ctc gat act cag atc cga aag ctg cgg tcc agg
2272Ala Asn Val Thr Val Leu Asp Thr Gln Ile Arg Lys Leu Arg Ser Arg
715 720 725tct ctc tcc caa ata cat gag
gcg gct gtg agg atg agg tcg gaa gcc 2320Ser Leu Ser Gln Ile His Glu
Ala Ala Val Arg Met Arg Ser Glu Ala 730 735
740aca gat gtg aag tcc aca ctg gca gaa att gag gac tgg ctt gat aaa
2368Thr Asp Val Lys Ser Thr Leu Ala Glu Ile Glu Asp Trp Leu Asp Lys745
750 755 760tta atg cag ctg
act gaa gag cca cag aac agc atg cct gac atc atc 2416Leu Met Gln Leu
Thr Glu Glu Pro Gln Asn Ser Met Pro Asp Ile Ile 765
770 775atc tgg atg atc cgg gga gag aag aga ctg
gcc tat gca cga att ccc 2464Ile Trp Met Ile Arg Gly Glu Lys Arg Leu
Ala Tyr Ala Arg Ile Pro 780 785
790gca cat cag gtc ttg tac tcc acc agt ggt gag aat gca tct gga aaa
2512Ala His Gln Val Leu Tyr Ser Thr Ser Gly Glu Asn Ala Ser Gly Lys
795 800 805tac tgt ggg aaa acc caa acc
atc ttt ctg aag tat cca cag gag aaa 2560Tyr Cys Gly Lys Thr Gln Thr
Ile Phe Leu Lys Tyr Pro Gln Glu Lys 810 815
820aac aac ggg cca aag gtg cct gtg gag ttg cga gtg aac atc tgg cta
2608Asn Asn Gly Pro Lys Val Pro Val Glu Leu Arg Val Asn Ile Trp Leu825
830 835 840ggc tta agt gct
gtg gag aag aag ttt aac agc ttc gca gaa gga act 2656Gly Leu Ser Ala
Val Glu Lys Lys Phe Asn Ser Phe Ala Glu Gly Thr 845
850 855ttc acc gtc ttt gct gaa atg tat gaa aat
caa gct ctc atg ttt gga 2704Phe Thr Val Phe Ala Glu Met Tyr Glu Asn
Gln Ala Leu Met Phe Gly 860 865
870aaa tgg ggt act tct gga tta gta gga cgt cat aag ttt tct gat gtc
2752Lys Trp Gly Thr Ser Gly Leu Val Gly Arg His Lys Phe Ser Asp Val
875 880 885aca gga aaa ata aaa ctc aag
agg gaa ttt ttt ctg cct cca aaa ggc 2800Thr Gly Lys Ile Lys Leu Lys
Arg Glu Phe Phe Leu Pro Pro Lys Gly 890 895
900tgg gaa tgg gaa gga gag tgg ata gtt gat cct gaa aga agc ttg ctg
2848Trp Glu Trp Glu Gly Glu Trp Ile Val Asp Pro Glu Arg Ser Leu Leu905
910 915 920act gag gca gat
gca ggt cac acg gag ttc act gat gaa gtc tat cag 2896Thr Glu Ala Asp
Ala Gly His Thr Glu Phe Thr Asp Glu Val Tyr Gln 925
930 935aac gag agc cgc tac ccc ggg ggc gac tgg
aag ccg gcc gag gac acc 2944Asn Glu Ser Arg Tyr Pro Gly Gly Asp Trp
Lys Pro Ala Glu Asp Thr 940 945
950tac acg gat gcg aac ggc gat aaa gca gca tca ccc agc gag ttg act
2992Tyr Thr Asp Ala Asn Gly Asp Lys Ala Ala Ser Pro Ser Glu Leu Thr
955 960 965tgt cct cca ggt tgg gaa tgg
gaa gat gat gca tgg tct tat gac ata 3040Cys Pro Pro Gly Trp Glu Trp
Glu Asp Asp Ala Trp Ser Tyr Asp Ile 970 975
980aat cga gcg gtg gat gag aaa ggc tgg gaa tat gga atc acc att cct
3088Asn Arg Ala Val Asp Glu Lys Gly Trp Glu Tyr Gly Ile Thr Ile Pro985
990 995 1000cct gat cat
aag ccc aaa tcc tgg gtt gca gca gag aaa atg tac 3133Pro Asp His
Lys Pro Lys Ser Trp Val Ala Ala Glu Lys Met Tyr 1005
1010 1015cac act cat aga cgg cga agg ctg gtc
cga aaa cgc aag aaa gat 3178His Thr His Arg Arg Arg Arg Leu Val
Arg Lys Arg Lys Lys Asp 1020 1025
1030tta aca cag act gct tca agc acc gca agg gcc atg gag gaa ttg
3223Leu Thr Gln Thr Ala Ser Ser Thr Ala Arg Ala Met Glu Glu Leu
1035 1040 1045caa gac caa
gag ggc tgg gaa tat gct tct cta att ggc tgg aaa 3268Gln Asp Gln
Glu Gly Trp Glu Tyr Ala Ser Leu Ile Gly Trp Lys 1050
1055 1060ttt cac tgg aaa caa cgt agt tca gat
acc ttc cgc cgc aga cgc 3313Phe His Trp Lys Gln Arg Ser Ser Asp
Thr Phe Arg Arg Arg Arg 1065 1070
1075tgg agg aga aaa atg gct cct tca gaa aca cat ggt gca gct gcc
3358Trp Arg Arg Lys Met Ala Pro Ser Glu Thr His Gly Ala Ala Ala
1080 1085 1090atc ttt aaa
ctt gaa ggt gcc ctt ggg gca gac act acc gaa gat 3403Ile Phe Lys
Leu Glu Gly Ala Leu Gly Ala Asp Thr Thr Glu Asp 1095
1100 1105ggg gat gag aag agc ctg gag aaa cag
aag cac agt gcc acc act 3448Gly Asp Glu Lys Ser Leu Glu Lys Gln
Lys His Ser Ala Thr Thr 1110 1115
1120gtg ttc gga gca aac acc ccc att gtt tcc tgc aat ttt gac aga
3493Val Phe Gly Ala Asn Thr Pro Ile Val Ser Cys Asn Phe Asp Arg
1125 1130 1135gtc tac atc
tac cat ctg cgc tgc tat gtc tat caa gcc aga aac 3538Val Tyr Ile
Tyr His Leu Arg Cys Tyr Val Tyr Gln Ala Arg Asn 1140
1145 1150ctc ttg gct tta gat aag gat agc ttt
tca gat cca tat gct cat 3583Leu Leu Ala Leu Asp Lys Asp Ser Phe
Ser Asp Pro Tyr Ala His 1155 1160
1165atc tgt ttc ctc cat cgg agc aaa acc act gag atc atc cat tca
3628Ile Cys Phe Leu His Arg Ser Lys Thr Thr Glu Ile Ile His Ser
1170 1175 1180acc ctg aat
ccc acg tgg gac caa aca att ata ttc gat gaa gtt 3673Thr Leu Asn
Pro Thr Trp Asp Gln Thr Ile Ile Phe Asp Glu Val 1185
1190 1195gaa atc tat ggg gaa ccc caa aca gtt
cta cag aat cca ccc aaa 3718Glu Ile Tyr Gly Glu Pro Gln Thr Val
Leu Gln Asn Pro Pro Lys 1200 1205
1210gtt atc atg gaa ctt ttt gac aat gac caa gtg ggc aaa gat gaa
3763Val Ile Met Glu Leu Phe Asp Asn Asp Gln Val Gly Lys Asp Glu
1215 1220 1225ttt tta gga
cga agc att ttc tct cct gtg gtg aaa ctg aac tca 3808Phe Leu Gly
Arg Ser Ile Phe Ser Pro Val Val Lys Leu Asn Ser 1230
1235 1240gaa atg gac atc aca ccc aaa ctt ctc
tgg cac cca gta atg aat 3853Glu Met Asp Ile Thr Pro Lys Leu Leu
Trp His Pro Val Met Asn 1245 1250
1255gga gac aaa gcc tgc ggg gat gtt ctt gta act gca gag ctg att
3898Gly Asp Lys Ala Cys Gly Asp Val Leu Val Thr Ala Glu Leu Ile
1260 1265 1270ctg agg ggc
aag gat ggc tcc aac ctt ccc att ctt ccc cct caa 3943Leu Arg Gly
Lys Asp Gly Ser Asn Leu Pro Ile Leu Pro Pro Gln 1275
1280 1285agg gcg cca aat cta tac atg gtc ccc
cag ggg atc agg cct gtg 3988Arg Ala Pro Asn Leu Tyr Met Val Pro
Gln Gly Ile Arg Pro Val 1290 1295
1300gtc cag ctc act gcc att gag att cta gct tgg ggc tta aga aat
4033Val Gln Leu Thr Ala Ile Glu Ile Leu Ala Trp Gly Leu Arg Asn
1305 1310 1315atg aaa aac
ttc cag atg gct tct atc aca tcc ccc agt ctt gtt 4078Met Lys Asn
Phe Gln Met Ala Ser Ile Thr Ser Pro Ser Leu Val 1320
1325 1330gtg gag tgt gga gga gaa agg gtg gaa
tcg gtg gtg atc aaa aac 4123Val Glu Cys Gly Gly Glu Arg Val Glu
Ser Val Val Ile Lys Asn 1335 1340
1345ctt aag aag aca ccc aac ttt cca agt tct gtt ctc ttc atg aaa
4168Leu Lys Lys Thr Pro Asn Phe Pro Ser Ser Val Leu Phe Met Lys
1350 1355 1360gtg ttc ttg
ccc aag gag gaa ttg tac atg ccc cca ctg gtg atc 4213Val Phe Leu
Pro Lys Glu Glu Leu Tyr Met Pro Pro Leu Val Ile 1365
1370 1375aag gtc atc gac cac agg cag ttt ggg
cgg aag cct gtc gtc ggc 4258Lys Val Ile Asp His Arg Gln Phe Gly
Arg Lys Pro Val Val Gly 1380 1385
1390cag tgc acc atc gag cgc ctg gac cgc ttt cgc tgt gac cct tat
4303Gln Cys Thr Ile Glu Arg Leu Asp Arg Phe Arg Cys Asp Pro Tyr
1395 1400 1405gca ggg aaa
gag gac atc gtc cca cag ctc aaa gcc tcc ctt ctg 4348Ala Gly Lys
Glu Asp Ile Val Pro Gln Leu Lys Ala Ser Leu Leu 1410
1415 1420tct gcc cca cca tgc cgg gac atc gtt
atc gaa atg gaa gac acc 4393Ser Ala Pro Pro Cys Arg Asp Ile Val
Ile Glu Met Glu Asp Thr 1425 1430
1435aaa cca tta ctg gct tct aag ctg aca gaa aag gag gaa gaa atc
4438Lys Pro Leu Leu Ala Ser Lys Leu Thr Glu Lys Glu Glu Glu Ile
1440 1445 1450gtg gac tgg
tgg agt aaa ttt tat gct tcc tca ggg gaa cat gaa 4483Val Asp Trp
Trp Ser Lys Phe Tyr Ala Ser Ser Gly Glu His Glu 1455
1460 1465aaa tgc gga cag tat att cag aaa ggc
tat tcc aag ctc aag ata 4528Lys Cys Gly Gln Tyr Ile Gln Lys Gly
Tyr Ser Lys Leu Lys Ile 1470 1475
1480tat aat tgt gaa cta gaa aat gta gca gaa ttt gag ggc ctg aca
4573Tyr Asn Cys Glu Leu Glu Asn Val Ala Glu Phe Glu Gly Leu Thr
1485 1490 1495gac ttc tca
gat acg ttc aag ttg tac cga ggc aag tcg gat gaa 4618Asp Phe Ser
Asp Thr Phe Lys Leu Tyr Arg Gly Lys Ser Asp Glu 1500
1505 1510aat gaa gat cct tct gtg gtt gga gag
ttt aag ggc tcc ttt cgg 4663Asn Glu Asp Pro Ser Val Val Gly Glu
Phe Lys Gly Ser Phe Arg 1515 1520
1525atc tac cct ctg ccg gat gac ccc agc gtg cca gcc cct ccc aga
4708Ile Tyr Pro Leu Pro Asp Asp Pro Ser Val Pro Ala Pro Pro Arg
1530 1535 1540cag ttt cgg
gaa tta cct gac agc gtc cca cag gaa tgc acg gtt 4753Gln Phe Arg
Glu Leu Pro Asp Ser Val Pro Gln Glu Cys Thr Val 1545
1550 1555agg att tac att gtt cga ggc tta gag
ctc cag ccc cag gac aac 4798Arg Ile Tyr Ile Val Arg Gly Leu Glu
Leu Gln Pro Gln Asp Asn 1560 1565
1570aat ggc ctg tgt gac cct tac ata aaa ata aca ctg ggc aaa aaa
4843Asn Gly Leu Cys Asp Pro Tyr Ile Lys Ile Thr Leu Gly Lys Lys
1575 1580 1585gtc att gaa
gac cga gat cac tac att ccc aac act ctc aac cca 4888Val Ile Glu
Asp Arg Asp His Tyr Ile Pro Asn Thr Leu Asn Pro 1590
1595 1600gtc ttt ggc agg atg tac gaa ctg agc
tgc tac tta cct caa gaa 4933Val Phe Gly Arg Met Tyr Glu Leu Ser
Cys Tyr Leu Pro Gln Glu 1605 1610
1615aaa gac ctg aaa att tct gtc tat gat tat gac acc ttt acc cgg
4978Lys Asp Leu Lys Ile Ser Val Tyr Asp Tyr Asp Thr Phe Thr Arg
1620 1625 1630gat gaa aaa
gta gga gaa aca att att gat ctg gaa aac cga ttc 5023Asp Glu Lys
Val Gly Glu Thr Ile Ile Asp Leu Glu Asn Arg Phe 1635
1640 1645ctt tcc cgc ttt ggg tcc cac tgc ggc
ata cca gag gag tac tgt 5068Leu Ser Arg Phe Gly Ser His Cys Gly
Ile Pro Glu Glu Tyr Cys 1650 1655
1660gtt tct gga gtc aat acc tgg cga gat caa ctg aga cca aca cag
5113Val Ser Gly Val Asn Thr Trp Arg Asp Gln Leu Arg Pro Thr Gln
1665 1670 1675ctg ctt caa
aat gtc gcc aga ttc aaa ggc ttc cca caa ccc atc 5158Leu Leu Gln
Asn Val Ala Arg Phe Lys Gly Phe Pro Gln Pro Ile 1680
1685 1690ctt tcc gaa gat ggg agt aga atc aga
tat gga gga cga gac tac 5203Leu Ser Glu Asp Gly Ser Arg Ile Arg
Tyr Gly Gly Arg Asp Tyr 1695 1700
1705agc ttg gat gaa ttt gaa gcc aac aaa atc ctg cac cag cac ctc
5248Ser Leu Asp Glu Phe Glu Ala Asn Lys Ile Leu His Gln His Leu
1710 1715 1720ggg gcc cct
gaa gag cgg ctt gct ctt cac atc ctc agg act cag 5293Gly Ala Pro
Glu Glu Arg Leu Ala Leu His Ile Leu Arg Thr Gln 1725
1730 1735ggg ctg gtc cct gag cac gtg gaa aca
agg act ttg cac agc acc 5338Gly Leu Val Pro Glu His Val Glu Thr
Arg Thr Leu His Ser Thr 1740 1745
1750ttc cag ccc aac att tcc cag gga aaa ctt cag atg tgg gtg gat
5383Phe Gln Pro Asn Ile Ser Gln Gly Lys Leu Gln Met Trp Val Asp
1755 1760 1765gtt ttc ccc
aag agt ttg ggg cca cca ggc cct cct ttc aac atc 5428Val Phe Pro
Lys Ser Leu Gly Pro Pro Gly Pro Pro Phe Asn Ile 1770
1775 1780aca ccc cgg aaa gcc aag aaa tac tac
ctg cgt gtg atc atc tgg 5473Thr Pro Arg Lys Ala Lys Lys Tyr Tyr
Leu Arg Val Ile Ile Trp 1785 1790
1795aac acc aag gac gtt atc ttg gac gag aaa agc atc aca gga gag
5518Asn Thr Lys Asp Val Ile Leu Asp Glu Lys Ser Ile Thr Gly Glu
1800 1805 1810gaa atg agt
gac atc tac gtc aaa ggc tgg att cct ggc aat gaa 5563Glu Met Ser
Asp Ile Tyr Val Lys Gly Trp Ile Pro Gly Asn Glu 1815
1820 1825gaa aac aaa cag aaa aca gat gtc cat
tac aga tct ttg gat ggt 5608Glu Asn Lys Gln Lys Thr Asp Val His
Tyr Arg Ser Leu Asp Gly 1830 1835
1840gaa ggg aat ttt aac tgg cga ttt gtt ttc ccg ttt gac tac ctt
5653Glu Gly Asn Phe Asn Trp Arg Phe Val Phe Pro Phe Asp Tyr Leu
1845 1850 1855cca gcc gaa
caa ctc tgt atc gtt gcg aaa aaa gag cat ttc tgg 5698Pro Ala Glu
Gln Leu Cys Ile Val Ala Lys Lys Glu His Phe Trp 1860
1865 1870agt att gac caa acg gaa ttt cga atc
cca ccc agg ctg atc att 5743Ser Ile Asp Gln Thr Glu Phe Arg Ile
Pro Pro Arg Leu Ile Ile 1875 1880
1885cag ata tgg gac aat gac aag ttt tct ctg gat gac tac ttg ggt
5788Gln Ile Trp Asp Asn Asp Lys Phe Ser Leu Asp Asp Tyr Leu Gly
1890 1895 1900ttc cta gaa
ctt gac ttg cgt cac acg atc att cct gca aaa tca 5833Phe Leu Glu
Leu Asp Leu Arg His Thr Ile Ile Pro Ala Lys Ser 1905
1910 1915cca gag aaa tgc agg ttg gac atg att
ccg gac ctc aaa gcc atg 5878Pro Glu Lys Cys Arg Leu Asp Met Ile
Pro Asp Leu Lys Ala Met 1920 1925
1930aac ccc ctt aaa gcc aag aca gcc tcc ctc ttt gag cag aag tcc
5923Asn Pro Leu Lys Ala Lys Thr Ala Ser Leu Phe Glu Gln Lys Ser
1935 1940 1945atg aaa gga
tgg tgg cca tgc tac gca gag aaa gat ggc gcc cgc 5968Met Lys Gly
Trp Trp Pro Cys Tyr Ala Glu Lys Asp Gly Ala Arg 1950
1955 1960gta atg gct ggg aaa gtg gag atg aca
ttg gaa atc ctc aac gag 6013Val Met Ala Gly Lys Val Glu Met Thr
Leu Glu Ile Leu Asn Glu 1965 1970
1975aag gag gcc gac gag agg cca gcc ggg aag ggg cgg gac gaa ccc
6058Lys Glu Ala Asp Glu Arg Pro Ala Gly Lys Gly Arg Asp Glu Pro
1980 1985 1990aac atg aac
ccc aag ctg gac tta cca aat cga cca gaa acc tcc 6103Asn Met Asn
Pro Lys Leu Asp Leu Pro Asn Arg Pro Glu Thr Ser 1995
2000 2005ttc ctc tgg ttc acc aac cca tgc aag
acc atg aag ttc atc gtg 6148Phe Leu Trp Phe Thr Asn Pro Cys Lys
Thr Met Lys Phe Ile Val 2010 2015
2020tgg cgc cgc ttt aag tgg gtc atc atc ggc ttg ctg ttc ctg ctt
6193Trp Arg Arg Phe Lys Trp Val Ile Ile Gly Leu Leu Phe Leu Leu
2025 2030 2035atc ctg ctg
ctc ttc gtg gcc gtg ctc ctc tac tct ttg ccg aac 6238Ile Leu Leu
Leu Phe Val Ala Val Leu Leu Tyr Ser Leu Pro Asn 2040
2045 2050tat ttg tca atg aag att gta aag cca
aat gtg taa caaaggcaaa 6284Tyr Leu Ser Met Lys Ile Val Lys Pro
Asn Val 2055 2060ggcttcattt caagagtcat
ccagcaatga gagaatcctg cctctgtaga ccaacatcca 6344gtgtgatttt gtgtctgaga
ccacacccca gtagcaggtt acgccatgtc accgagcccc 6404attgattccc agagggtctt
agtcctggaa agtcaggcca acaagcaacg tttgcatcat 6464gttatctctt aagtattaaa
agttttattt tctaaagttt aaatcatgtt tttcaaaata 6524tttttcaagg tggctggttc
catttaaaaa tcatcttttt atatgtgtct tcggttctag 6584acttcagctt ttggaaattg
ctaaatagaa ttcaaaaatc tctgcatcct gaggtgatat 6644acttcatatt tgtaatcaac
tgaaagagct gtgcattata aaatcagtta gaatagttag 6704aacaattctt atttatgccc
acaaccattg ctatattttg tatggatgtc ataaaagtct 6764atttaacctc tgtaatgaaa
ctaaataaaa atgtttcacc tttaaaaaaa aaaaaaaaaa 6824aaaaa
68292322061PRTHOMO SAPIENS
232Met Leu Arg Val Ile Val Glu Ser Ala Ser Asn Ile Pro Lys Thr Lys1
5 10 15Phe Gly Lys Pro Asp Pro
Ile Val Ser Val Ile Phe Lys Asp Glu Lys 20 25
30Lys Lys Thr Lys Lys Val Asp Asn Glu Leu Asn Pro Val
Trp Asn Glu 35 40 45Ile Leu Glu
Phe Asp Leu Arg Gly Ile Pro Leu Asp Phe Ser Ser Ser 50
55 60Leu Gly Ile Ile Val Lys Asp Phe Glu Thr Ile Gly
Gln Asn Lys Leu65 70 75
80Ile Gly Thr Ala Thr Val Ala Leu Lys Asp Leu Thr Gly Asp Gln Ser
85 90 95Arg Ser Leu Pro Tyr Lys
Leu Ile Ser Leu Leu Asn Glu Lys Gly Gln 100
105 110Asp Thr Gly Ala Thr Ile Asp Leu Val Ile Gly Tyr
Asp Pro Pro Ser 115 120 125Ala Pro
His Pro Asn Asp Leu Ser Gly Pro Ser Val Pro Gly Met Gly 130
135 140Gly Asp Gly Glu Glu Asp Glu Gly Asp Glu Asp
Arg Leu Asp Asn Ala145 150 155
160Val Arg Gly Pro Gly Pro Lys Gly Pro Val Gly Thr Val Ser Glu Ala
165 170 175Gln Leu Ala Arg
Arg Leu Thr Lys Val Lys Asn Ser Arg Arg Met Leu 180
185 190Ser Asn Lys Pro Gln Asp Phe Gln Ile Arg Val
Arg Val Ile Glu Gly 195 200 205Arg
Gln Leu Ser Gly Asn Asn Ile Arg Pro Val Val Lys Val His Val 210
215 220Cys Gly Gln Thr His Arg Thr Arg Ile Lys
Arg Gly Asn Asn Pro Phe225 230 235
240Phe Asp Glu Leu Phe Phe Tyr Asn Val Asn Met Thr Pro Ser Glu
Leu 245 250 255Met Asp Glu
Ile Ile Ser Ile Arg Val Tyr Asn Ser His Ser Leu Arg 260
265 270Ala Asp Cys Leu Met Gly Glu Phe Lys Ile
Asp Val Gly Phe Val Tyr 275 280
285Asp Glu Pro Gly His Ala Val Met Arg Lys Trp Leu Leu Leu Asn Asp 290
295 300Pro Glu Asp Thr Ser Ser Gly Ser
Lys Gly Tyr Met Lys Val Ser Met305 310
315 320Phe Val Leu Gly Thr Gly Asp Glu Pro Pro Pro Glu
Arg Arg Asp Arg 325 330
335Asp Asn Asp Ser Asp Asp Val Glu Ser Asn Leu Leu Leu Pro Ala Gly
340 345 350Ile Ala Leu Arg Trp Val
Thr Phe Leu Leu Lys Ile Tyr Arg Ala Glu 355 360
365Asp Ile Pro Gln Met Asp Asp Ala Phe Ser Gln Thr Val Lys
Glu Ile 370 375 380Phe Gly Gly Asn Ala
Asp Lys Lys Asn Leu Val Asp Pro Phe Val Glu385 390
395 400Val Ser Phe Ala Gly Lys Lys Val Cys Thr
Asn Ile Ile Glu Lys Asn 405 410
415Ala Asn Pro Glu Trp Asn Gln Val Val Asn Leu Gln Ile Lys Phe Pro
420 425 430Ser Val Cys Glu Lys
Ile Lys Leu Thr Ile Tyr Asp Trp Asp Arg Leu 435
440 445Thr Lys Asn Asp Val Val Gly Thr Thr Tyr Leu His
Leu Ser Lys Ile 450 455 460Ala Ala Ser
Gly Gly Glu Val Glu Asp Phe Ser Ser Ser Gly Thr Gly465
470 475 480Ala Ala Ser Tyr Thr Val Asn
Thr Gly Glu Thr Glu Val Gly Phe Val 485
490 495Pro Thr Phe Gly Pro Cys Tyr Leu Asn Leu Tyr Gly
Ser Pro Arg Glu 500 505 510Tyr
Thr Gly Phe Pro Asp Pro Tyr Asp Glu Leu Asn Thr Gly Lys Gly 515
520 525Glu Gly Val Ala Tyr Arg Gly Arg Ile
Leu Val Glu Leu Ala Thr Phe 530 535
540Leu Glu Lys Thr Pro Pro Asp Lys Lys Leu Glu Pro Ile Ser Asn Asp545
550 555 560Asp Leu Leu Val
Val Glu Lys Tyr Gln Arg Arg Arg Lys Tyr Ser Leu 565
570 575Ser Ala Val Phe His Ser Ala Thr Met Leu
Gln Asp Val Gly Glu Ala 580 585
590Ile Gln Phe Glu Val Ser Ile Gly Asn Tyr Gly Asn Lys Phe Asp Thr
595 600 605Thr Cys Lys Pro Leu Ala Ser
Thr Thr Gln Tyr Ser Arg Ala Val Phe 610 615
620Asp Gly Asn Tyr Tyr Tyr Tyr Leu Pro Trp Ala His Thr Lys Pro
Val625 630 635 640Val Thr
Leu Thr Ser Tyr Trp Glu Asp Ile Ser His Arg Leu Asp Ala
645 650 655Val Asn Thr Leu Leu Ala Met
Ala Glu Arg Leu Gln Thr Asn Ile Glu 660 665
670Ala Leu Lys Ser Gly Ile Gln Gly Lys Ile Pro Ala Asn Gln
Leu Ala 675 680 685Glu Leu Trp Leu
Lys Leu Ile Asp Glu Val Ile Glu Asp Thr Arg Tyr 690
695 700Thr Leu Pro Leu Thr Glu Gly Lys Ala Asn Val Thr
Val Leu Asp Thr705 710 715
720Gln Ile Arg Lys Leu Arg Ser Arg Ser Leu Ser Gln Ile His Glu Ala
725 730 735Ala Val Arg Met Arg
Ser Glu Ala Thr Asp Val Lys Ser Thr Leu Ala 740
745 750Glu Ile Glu Asp Trp Leu Asp Lys Leu Met Gln Leu
Thr Glu Glu Pro 755 760 765Gln Asn
Ser Met Pro Asp Ile Ile Ile Trp Met Ile Arg Gly Glu Lys 770
775 780Arg Leu Ala Tyr Ala Arg Ile Pro Ala His Gln
Val Leu Tyr Ser Thr785 790 795
800Ser Gly Glu Asn Ala Ser Gly Lys Tyr Cys Gly Lys Thr Gln Thr Ile
805 810 815Phe Leu Lys Tyr
Pro Gln Glu Lys Asn Asn Gly Pro Lys Val Pro Val 820
825 830Glu Leu Arg Val Asn Ile Trp Leu Gly Leu Ser
Ala Val Glu Lys Lys 835 840 845Phe
Asn Ser Phe Ala Glu Gly Thr Phe Thr Val Phe Ala Glu Met Tyr 850
855 860Glu Asn Gln Ala Leu Met Phe Gly Lys Trp
Gly Thr Ser Gly Leu Val865 870 875
880Gly Arg His Lys Phe Ser Asp Val Thr Gly Lys Ile Lys Leu Lys
Arg 885 890 895Glu Phe Phe
Leu Pro Pro Lys Gly Trp Glu Trp Glu Gly Glu Trp Ile 900
905 910Val Asp Pro Glu Arg Ser Leu Leu Thr Glu
Ala Asp Ala Gly His Thr 915 920
925Glu Phe Thr Asp Glu Val Tyr Gln Asn Glu Ser Arg Tyr Pro Gly Gly 930
935 940Asp Trp Lys Pro Ala Glu Asp Thr
Tyr Thr Asp Ala Asn Gly Asp Lys945 950
955 960Ala Ala Ser Pro Ser Glu Leu Thr Cys Pro Pro Gly
Trp Glu Trp Glu 965 970
975Asp Asp Ala Trp Ser Tyr Asp Ile Asn Arg Ala Val Asp Glu Lys Gly
980 985 990Trp Glu Tyr Gly Ile Thr
Ile Pro Pro Asp His Lys Pro Lys Ser Trp 995 1000
1005Val Ala Ala Glu Lys Met Tyr His Thr His Arg Arg
Arg Arg Leu 1010 1015 1020Val Arg Lys
Arg Lys Lys Asp Leu Thr Gln Thr Ala Ser Ser Thr 1025
1030 1035Ala Arg Ala Met Glu Glu Leu Gln Asp Gln Glu
Gly Trp Glu Tyr 1040 1045 1050Ala Ser
Leu Ile Gly Trp Lys Phe His Trp Lys Gln Arg Ser Ser 1055
1060 1065Asp Thr Phe Arg Arg Arg Arg Trp Arg Arg
Lys Met Ala Pro Ser 1070 1075 1080Glu
Thr His Gly Ala Ala Ala Ile Phe Lys Leu Glu Gly Ala Leu 1085
1090 1095Gly Ala Asp Thr Thr Glu Asp Gly Asp
Glu Lys Ser Leu Glu Lys 1100 1105
1110Gln Lys His Ser Ala Thr Thr Val Phe Gly Ala Asn Thr Pro Ile
1115 1120 1125Val Ser Cys Asn Phe Asp
Arg Val Tyr Ile Tyr His Leu Arg Cys 1130 1135
1140Tyr Val Tyr Gln Ala Arg Asn Leu Leu Ala Leu Asp Lys Asp
Ser 1145 1150 1155Phe Ser Asp Pro Tyr
Ala His Ile Cys Phe Leu His Arg Ser Lys 1160 1165
1170Thr Thr Glu Ile Ile His Ser Thr Leu Asn Pro Thr Trp
Asp Gln 1175 1180 1185Thr Ile Ile Phe
Asp Glu Val Glu Ile Tyr Gly Glu Pro Gln Thr 1190
1195 1200Val Leu Gln Asn Pro Pro Lys Val Ile Met Glu
Leu Phe Asp Asn 1205 1210 1215Asp Gln
Val Gly Lys Asp Glu Phe Leu Gly Arg Ser Ile Phe Ser 1220
1225 1230Pro Val Val Lys Leu Asn Ser Glu Met Asp
Ile Thr Pro Lys Leu 1235 1240 1245Leu
Trp His Pro Val Met Asn Gly Asp Lys Ala Cys Gly Asp Val 1250
1255 1260Leu Val Thr Ala Glu Leu Ile Leu Arg
Gly Lys Asp Gly Ser Asn 1265 1270
1275Leu Pro Ile Leu Pro Pro Gln Arg Ala Pro Asn Leu Tyr Met Val
1280 1285 1290Pro Gln Gly Ile Arg Pro
Val Val Gln Leu Thr Ala Ile Glu Ile 1295 1300
1305Leu Ala Trp Gly Leu Arg Asn Met Lys Asn Phe Gln Met Ala
Ser 1310 1315 1320Ile Thr Ser Pro Ser
Leu Val Val Glu Cys Gly Gly Glu Arg Val 1325 1330
1335Glu Ser Val Val Ile Lys Asn Leu Lys Lys Thr Pro Asn
Phe Pro 1340 1345 1350Ser Ser Val Leu
Phe Met Lys Val Phe Leu Pro Lys Glu Glu Leu 1355
1360 1365Tyr Met Pro Pro Leu Val Ile Lys Val Ile Asp
His Arg Gln Phe 1370 1375 1380Gly Arg
Lys Pro Val Val Gly Gln Cys Thr Ile Glu Arg Leu Asp 1385
1390 1395Arg Phe Arg Cys Asp Pro Tyr Ala Gly Lys
Glu Asp Ile Val Pro 1400 1405 1410Gln
Leu Lys Ala Ser Leu Leu Ser Ala Pro Pro Cys Arg Asp Ile 1415
1420 1425Val Ile Glu Met Glu Asp Thr Lys Pro
Leu Leu Ala Ser Lys Leu 1430 1435
1440Thr Glu Lys Glu Glu Glu Ile Val Asp Trp Trp Ser Lys Phe Tyr
1445 1450 1455Ala Ser Ser Gly Glu His
Glu Lys Cys Gly Gln Tyr Ile Gln Lys 1460 1465
1470Gly Tyr Ser Lys Leu Lys Ile Tyr Asn Cys Glu Leu Glu Asn
Val 1475 1480 1485Ala Glu Phe Glu Gly
Leu Thr Asp Phe Ser Asp Thr Phe Lys Leu 1490 1495
1500Tyr Arg Gly Lys Ser Asp Glu Asn Glu Asp Pro Ser Val
Val Gly 1505 1510 1515Glu Phe Lys Gly
Ser Phe Arg Ile Tyr Pro Leu Pro Asp Asp Pro 1520
1525 1530Ser Val Pro Ala Pro Pro Arg Gln Phe Arg Glu
Leu Pro Asp Ser 1535 1540 1545Val Pro
Gln Glu Cys Thr Val Arg Ile Tyr Ile Val Arg Gly Leu 1550
1555 1560Glu Leu Gln Pro Gln Asp Asn Asn Gly Leu
Cys Asp Pro Tyr Ile 1565 1570 1575Lys
Ile Thr Leu Gly Lys Lys Val Ile Glu Asp Arg Asp His Tyr 1580
1585 1590Ile Pro Asn Thr Leu Asn Pro Val Phe
Gly Arg Met Tyr Glu Leu 1595 1600
1605Ser Cys Tyr Leu Pro Gln Glu Lys Asp Leu Lys Ile Ser Val Tyr
1610 1615 1620Asp Tyr Asp Thr Phe Thr
Arg Asp Glu Lys Val Gly Glu Thr Ile 1625 1630
1635Ile Asp Leu Glu Asn Arg Phe Leu Ser Arg Phe Gly Ser His
Cys 1640 1645 1650Gly Ile Pro Glu Glu
Tyr Cys Val Ser Gly Val Asn Thr Trp Arg 1655 1660
1665Asp Gln Leu Arg Pro Thr Gln Leu Leu Gln Asn Val Ala
Arg Phe 1670 1675 1680Lys Gly Phe Pro
Gln Pro Ile Leu Ser Glu Asp Gly Ser Arg Ile 1685
1690 1695Arg Tyr Gly Gly Arg Asp Tyr Ser Leu Asp Glu
Phe Glu Ala Asn 1700 1705 1710Lys Ile
Leu His Gln His Leu Gly Ala Pro Glu Glu Arg Leu Ala 1715
1720 1725Leu His Ile Leu Arg Thr Gln Gly Leu Val
Pro Glu His Val Glu 1730 1735 1740Thr
Arg Thr Leu His Ser Thr Phe Gln Pro Asn Ile Ser Gln Gly 1745
1750 1755Lys Leu Gln Met Trp Val Asp Val Phe
Pro Lys Ser Leu Gly Pro 1760 1765
1770Pro Gly Pro Pro Phe Asn Ile Thr Pro Arg Lys Ala Lys Lys Tyr
1775 1780 1785Tyr Leu Arg Val Ile Ile
Trp Asn Thr Lys Asp Val Ile Leu Asp 1790 1795
1800Glu Lys Ser Ile Thr Gly Glu Glu Met Ser Asp Ile Tyr Val
Lys 1805 1810 1815Gly Trp Ile Pro Gly
Asn Glu Glu Asn Lys Gln Lys Thr Asp Val 1820 1825
1830His Tyr Arg Ser Leu Asp Gly Glu Gly Asn Phe Asn Trp
Arg Phe 1835 1840 1845Val Phe Pro Phe
Asp Tyr Leu Pro Ala Glu Gln Leu Cys Ile Val 1850
1855 1860Ala Lys Lys Glu His Phe Trp Ser Ile Asp Gln
Thr Glu Phe Arg 1865 1870 1875Ile Pro
Pro Arg Leu Ile Ile Gln Ile Trp Asp Asn Asp Lys Phe 1880
1885 1890Ser Leu Asp Asp Tyr Leu Gly Phe Leu Glu
Leu Asp Leu Arg His 1895 1900 1905Thr
Ile Ile Pro Ala Lys Ser Pro Glu Lys Cys Arg Leu Asp Met 1910
1915 1920Ile Pro Asp Leu Lys Ala Met Asn Pro
Leu Lys Ala Lys Thr Ala 1925 1930
1935Ser Leu Phe Glu Gln Lys Ser Met Lys Gly Trp Trp Pro Cys Tyr
1940 1945 1950Ala Glu Lys Asp Gly Ala
Arg Val Met Ala Gly Lys Val Glu Met 1955 1960
1965Thr Leu Glu Ile Leu Asn Glu Lys Glu Ala Asp Glu Arg Pro
Ala 1970 1975 1980Gly Lys Gly Arg Asp
Glu Pro Asn Met Asn Pro Lys Leu Asp Leu 1985 1990
1995Pro Asn Arg Pro Glu Thr Ser Phe Leu Trp Phe Thr Asn
Pro Cys 2000 2005 2010Lys Thr Met Lys
Phe Ile Val Trp Arg Arg Phe Lys Trp Val Ile 2015
2020 2025Ile Gly Leu Leu Phe Leu Leu Ile Leu Leu Leu
Phe Val Ala Val 2030 2035 2040Leu Leu
Tyr Ser Leu Pro Asn Tyr Leu Ser Met Lys Ile Val Lys 2045
2050 2055Pro Asn Val 206023316DNAArtificial
sequenceprimer 233gcttgccaaa cctaca
1623416DNAArtificial sequenceprimer 234tgtaggtctg gcaagc
1623518DNAArtificial
sequenceprimer 235atcttgttca atcatgcg
1823616DNAArtificial sequenceprimer 236gggtctgacg ctcatg
1623716DNAArtificial
sequenceprimer 237gataggtgcc tcactg
1623819DNAArtificialRab9 siRNA 238gggaagagtt cacttatga
1923919DNAArtificialRab9
siRNA 239tcacaaagct tccagaact
1924019DNAArtificialRab9 siRNA 240gtaacaagat tgacataag
1924119DNAArtificialRab9 siRNA
241ggaagtggat ggacatttt
1924219RNAArtificial SequenceRNAi molecule 242ggucagagcu ggaggauuu
1924319RNAArtificial
SequenceRNAi molecule 243gaaagaagga gacccguua
1924419RNAArtificial SequenceRNAi molecule
244ccaagaagau cuacaaugg
1924519RNAArtificial SequenceRNAi molecule 245ggaacugcau gcugaauga
1924627RNAArtificial
SequenceRNAi molecule 246uagaccugcu cagccuucug gauacuu
2724727RNAArtificial SequenceRNAi molecule
247cuucucauaa uugaaguggu ugucguu
2724827RNAArtificial SequenceRNAi molecule 248gugugucuuc ucauaauuga
agugguu 2724927RNAArtificial
SequenceRNAi molecule 249cgcugugugu ucuucaugug ugacguu
2725027RNAArtificial SequenceRNAi molecule
250agaccugcuc agccuucugg auacuuu
2725127RNAArtificial SequenceRNAi molecule 251ccucuugaga ucagguuggc
agucauu 2725227RNAArtificial
SequenceRNAi molecule 252gaccugcuca gccuucugga uacuuuu
2725327RNAArtificial SequenceRNAi molecule
253ccgauuuuaa uccucuugcu ucaauuu
2725427RNAArtificial SequenceRNAi molecule 254uccgauuuua auccucuugc
uucaauu 2725527RNAArtificial
SequenceRNAi molecule 255cagaucauga aucgacucaa accucuu
2725627RNAArtificial SequenceRNAi molecule
256accugcucag ccuucuggau acuuuuu
2725727RNAArtificial SequenceRNAi molecule 257agaucuuuuc caccgcugug
uguucuu 2725827RNAArtificial
SequenceRNAi molecule 258guguugugag gucacaacag uacacuu
2725927RNAArtificial SequenceRNAi molecule
259ggccuuccga uuuuaauccu cuugcuu
2726027RNAArtificial SequenceRNAi molecule 260gcagcuuuug uuucuaugua
caguguu 2726127RNAArtificial
SequenceRNAi molecule 261auagacauug gcagauauau cggccuu
2726227RNAArtificial SequenceRNAi molecule
262gcuguguguu cuucaugugu gacguuu
2726327RNAArtificial SequenceRNAi molecule 263ugaguguugu gagccuucac
aaguguu 2726427RNAArtificial
SequenceRNAi molecule 264ugacguuugu uuuucuuggu ucauuuu
2726527RNAArtificial SequenceRNAi molecule
265gugacguuug uuuuucuugg uucauuu
2726627RNAArtificial SequenceRNAi molecule 266ugugacguuu guuuuucuug
guucauu 2726727RNAArtificial
SequenceRNAi molecule 267acaacaguac acuuucuuga uccucuu
2726827RNAArtificial SequenceRNAi molecule
268gccucggaac guguggaccu uaaaguu
2726927RNAArtificial SequenceRNAi molecule 269uucuauguac aguguuauca
agccauc 2727027RNAArtificial
SequenceRNAi molecule 270uucucauaau ugaagugguu gucguug
2727127RNAArtificial SequenceRNAi molecule
271caguguuauc aagccaucug ucaccag
2727227RNAArtificial SequenceRNAi molecule 272uguguacguu caauccacag
ucugagc 2727327RNAArtificial
SequenceRNAi molecule 273uguacagugu uaucaagcca ucuguca
2727427RNAArtificial SequenceRNAi molecule
274aguguuauca agccaucugu caccaga
2727527RNAArtificial SequenceRNAi molecule 275guacaguguu aucaagccau
cugucac 2727627RNAArtificial
SequenceRNAi molecule 276uuguguacgu ucaauccaca gucugag
2727727RNAArtificial SequenceRNAi molecule
277ucuauguaca guguuaucaa gccaucu
2727827RNAArtificial SequenceRNAi molecule 278ucauaauuga agugguuguc
guugugu 2727927RNAArtificial
SequenceRNAi molecule 279ucucauaauu gaagugguug ucguugu
2728027RNAArtificial SequenceRNAi molecule
280aauugaagug guugucguug uguguga
2728127RNAArtificial SequenceRNAi molecule 281cugucaccag aucaugaauc
gacucaa 2728227RNAArtificial
SequenceRNAi molecule 282acaguguuau caagccaucu gucacca
2728327RNAArtificial SequenceRNAi molecule
283uacaguguua ucaagccauc ugucacc
2728427RNAArtificial SequenceRNAi molecule 284uuccaccgcu guguguucuu
caugugu 2728527RNAArtificial
SequenceRNAi molecule 285uauguacagu guuaucaagc caucugu
2728627RNAArtificial SequenceRNAi molecule
286auaauugaag ugguugucgu ugugugu
2728727RNAArtificial SequenceRNAi molecule 287ucuucucaua auugaagugg
uugucgu 2728827RNAArtificial
SequenceRNAi molecule 288gugucuucuc auaauugaag ugguugu
2728927RNAArtificial SequenceRNAi molecule
289gucuucucau aauugaagug guugucg
2729027RNAArtificial SequenceRNAi molecule 290ucuggauaga cauuggcaga
uauaucg 2729127RNAArtificial
SequenceRNAi molecule 291ucugucacca gaucaugaau cgacuca
2729227RNAArtificial SequenceRNAi molecule
292auugaagugg uugucguugu gugugag
2729327RNAArtificial SequenceRNAi molecule 293uugaaguggu ugucguugug
ugugagg 2729427RNAArtificial
SequenceRNAi molecule 294guguacguuc aauccacagu cugagca
2729527RNAArtificial SequenceRNAi molecule
295ccaccgcugu guguucuuca uguguga
2729627RNAArtificial SequenceRNAi molecule 296gaauuuauuu caguagauau
cgaacug 2729727RNAArtificial
SequenceRNAi molecule 297cucgguaaua caagcgaacu ccaaguu
2729827RNAArtificial SequenceRNAi molecule
298ucaccucauc uauauuacau ucauguu
2729927RNAArtificial SequenceRNAi molecule 299auuagauguu acaaguccaa
gagaauu 2730027RNAArtificial
SequenceRNAi molecule 300aaucaucauu aauuguugga uaguguu
2730127RNAArtificial SequenceRNAi molecule
301ccucaucuau auuacauuca uguucuu
2730227RNAArtificial SequenceRNAi molecule 302aauuauauuc accucuucau
caagguu 2730327RNAArtificial
SequenceRNAi molecule 303auauucaccu cuucaucaag guuacuu
2730427RNAArtificial SequenceRNAi molecule
304aagauguauc cuauauccuu cacucuu
2730527RNAArtificial SequenceRNAi molecule 305aacuggagug uguggaggaa
uuauauu 2730627RNAArtificial
SequenceRNAi molecule 306ucgguaauac aagcgaacuc caaguuu
2730727RNAArtificial SequenceRNAi molecule
307gagaacuuca auaauucuug uaucauu
2730827RNAArtificial SequenceRNAi molecule 308ucaaccucug gaaguccauu
agauguu 2730927RNAArtificial
SequenceRNAi molecule 309gcaguuguua aaauaggaaa ucagauu
2731027RNAArtificial SequenceRNAi molecule
310ccagaucauc uuccauuugu aauacuu
2731127RNAArtificial SequenceRNAi molecule 311aaugaaauca ccagaucauc
uuccauu 2731227RNAArtificial
SequenceRNAi molecule 312acugaaauga aaucaccaga ucaucuu
2731327RNAArtificial SequenceRNAi molecule
313guucuucuuc ugauuuaagc auggauu
2731427RNAArtificial SequenceRNAi molecule 314gaauggauaa ucguucuucu
ucugauu 2731527RNAArtificial
SequenceRNAi molecule 315uucugaaggu ugaucacuug cagaauu
2731627RNAArtificial SequenceRNAi molecule
316cuaauaaaaa ugugauccaa gaaacuu
2731727RNAArtificial SequenceRNAi molecule 317ucuuuacaga gaacuucaau
aauucuu 2731827RNAArtificial
SequenceRNAi molecule 318cucaucuaua uuacauucau guucuuu
2731927RNAArtificial SequenceRNAi molecule
319cauuuuucac cucaucuaua uuacauu
2732027RNAArtificial SequenceRNAi molecule 320uaugaaaaau guugucauuc
agaaguu 2732127RNAArtificial
SequenceRNAi molecule 321acucgguaau acaagcgaac uccaagu
2732226RNAArtificial SequenceRNAi molecule
322uaucgguaau acaagcgaac uccaag
2632327RNAArtificial SequenceRNAi molecule 323ccauuagaug uuacaagucc
aagagaa 2732427RNAArtificial
SequenceRNAi molecule 324uccauuagau guuacaaguc caagaga
2732527RNAArtificial SequenceRNAi molecule
325aguccauuag auguuacaag uccaaga
2732627RNAArtificial SequenceRNAi molecule 326aaguccauua gauguuacaa
guccaag 2732727RNAArtificial
SequenceRNAi molecule 327gaaguccauu agauguuaca aguccaa
2732827RNAArtificial SequenceRNAi molecule
328guccauuaga uguuacaagu ccaagag
2732927RNAArtificial SequenceRNAi molecule 329uuacucggua auacaagcga
acuccaa 2733027RNAArtificial
SequenceRNAi molecule 330ucauuaauug uuggauagug uucauaa
2733127RNAArtificial SequenceRNAi molecule
331accucaucua uauuacauuc auguucu
2733227RNAArtificial SequenceRNAi molecule 332uucaccucau cuauauuaca
uucaugu 2733327RNAArtificial
SequenceRNAi molecule 333cauuaauugu uggauagugu ucauaac
2733427RNAArtificial SequenceRNAi molecule
334caucauuaau uguuggauag uguucau
2733527RNAArtificial SequenceRNAi molecule 335ucaucauuaa uuguuggaua
guguuca 2733627RNAArtificial
SequenceRNAi molecule 336agauguuaca aguccaagag aauucau
2733727RNAArtificial SequenceRNAi molecule
337uagauguuac aaguccaaga gaauuca
2733827RNAArtificial SequenceRNAi molecule 338cauuagaugu uacaagucca
agagaau 2733927RNAArtificial
SequenceRNAi molecule 339aggaauuaua uucaccucuu caucaag
2734027RNAArtificial SequenceRNAi molecule
340ggaaguccau uagauguuac aagucca
2734127RNAArtificial SequenceRNAi molecule 341accucuggaa guccauuaga
uguuaca 2734227RNAArtificial
SequenceRNAi molecule 342auguuacaag uccaagagaa uucauaa
2734327RNAArtificial SequenceRNAi molecule
343uauauucacc ucuucaucaa gguuacu
2734427RNAArtificial SequenceRNAi molecule 344uuauauucac cucuucauca
agguuac 2734527RNAArtificial
SequenceRNAi molecule 345uaacuggagu guguggagga auuauau
2734627RNAArtificial SequenceRNAi molecule
346cuucucugug aguugauaag cauucuu
2734727RNAArtificial SequenceRNAi molecule 347cacuugccaa gagaucguug
uaacauu 2734827RNAArtificial
SequenceRNAi molecule 348uucaguuggu cucucagucg cuguauu
2734927RNAArtificial SequenceRNAi molecule
349cgguaguacu auaucuggcc uucaguu
2735027RNAArtificial SequenceRNAi molecule 350caaugcggua guacuauauc
uggccuu 2735127RNAArtificial
SequenceRNAi molecule 351cugaucauac acgagccacu gcugauu
2735227RNAArtificial SequenceRNAi molecule
352ugugaguuga uaagcauucu ucuccuu
2735327RNAArtificial SequenceRNAi molecule 353uugaagauaa ccuucugauu
caggcuu 2735427RNAArtificial
SequenceRNAi molecule 354uccuucucag ccucaaggac ucgaauu
2735527RNAArtificial SequenceRNAi molecule
355cuucucucgu ugucucuucc agcuguu
2735627RNAArtificial SequenceRNAi molecule 356ucugcuucuc uucuugaaga
uaaccuu 2735727RNAArtificial
SequenceRNAi molecule 357guccuucucu gugaguugau aagcauu
2735827RNAArtificial SequenceRNAi molecule
358gaucauacac gagccacugc ugauuuu
2735927RNAArtificial SequenceRNAi molecule 359aucauacacg agccacugcu
gauuuuu 2736027RNAArtificial
SequenceRNAi molecule 360ugaucauaca cgagccacug cugauuu
2736127RNAArtificial SequenceRNAi molecule
361uucgugaggu ugcagcagac aacuguu
2736227RNAArtificial SequenceRNAi molecule 362uuauuuauug augaguugaa
gcaguuu 2736327RNAArtificial
SequenceRNAi molecule 363auuauuuauu gaugaguuga agcaguu
2736427RNAArtificial SequenceRNAi molecule
364ucucuucuug aagauaaccu ucugauu
2736527RNAArtificial SequenceRNAi molecule 365ucaaccucaa gaucuuuuuu
ugcacuu 2736627RNAArtificial
SequenceRNAi molecule 366ugucguucaa ccucaagauc uuuuuuu
2736727RNAArtificial SequenceRNAi molecule
367uugucguuca accucaagau cuuuuuu
2736827RNAArtificial SequenceRNAi molecule 368uuugucguuc aaccucaaga
ucuuuuu 2736927RNAArtificial
SequenceRNAi molecule 369acuugccaag agaucguugu aacauuu
2737027RNAArtificial SequenceRNAi molecule
370guuugucguu caaccucaag aucuuuu
2737127RNAArtificial SequenceRNAi molecule 371ccuucucugu gaguugauaa
gcauucu 2737227RNAArtificial
SequenceRNAi molecule 372ucucugugag uugauaagca uucuucu
2737327RNAArtificial SequenceRNAi molecule
373uugauaagca uucuucuccu ucucagc
2737427RNAArtificial SequenceRNAi molecule 374aagcauucuu cuccuucuca
gccucaa 2737527RNAArtificial
SequenceRNAi molecule 375uaagcauucu ucuccuucuc agccuca
2737627RNAArtificial SequenceRNAi molecule
376gauaagcauu cuucuccuuc ucagccu
2737727RNAArtificial SequenceRNAi molecule 377ugauaagcau ucuucuccuu
cucagcc 2737827RNAArtificial
SequenceRNAi molecule 378augcgguagu acuauaucug gccuuca
2737927RNAArtificial SequenceRNAi molecule
379ugcacuugcc aagagaucgu uguaaca
2738027RNAArtificial SequenceRNAi molecule 380uugcacuugc caagagaucg
uuguaac 2738127RNAArtificial
SequenceRNAi molecule 381agcauucuuc uccuucucag ccucaag
2738227RNAArtificial SequenceRNAi molecule
382ugcgguagua cuauaucugg ccuucag
2738327RNAArtificial SequenceRNAi molecule 383ucucguuguc ucuuccagcu
guucaag 2738427RNAArtificial
SequenceRNAi molecule 384cucguugucu cuuccagcug uucaagc
2738527RNAArtificial SequenceRNAi molecule
385gcugaucaua cacgagccac ugcugau
2738627RNAArtificial SequenceRNAi molecule 386ugcugaucau acacgagcca
cugcuga 2738727RNAArtificial
SequenceRNAi molecule 387aguugauaag cauucuucuc cuucuca
2738827RNAArtificial SequenceRNAi molecule
388guugauaagc auucuucucc uucucag
2738927RNAArtificial SequenceRNAi molecule 389cugugaguug auaagcauuc
uucuccu 2739027RNAArtificial
SequenceRNAi molecule 390ucugugaguu gauaagcauu cuucucc
2739127RNAArtificial SequenceRNAi molecule
391cuugaagaua accuucugau ucaggcu
2739227RNAArtificial SequenceRNAi molecule 392guaguacuau aucuggccuu
caguugg 2739327RNAArtificial
SequenceRNAi molecule 393aagcaaugcg guaguacuau aucuggc
2739427RNAArtificial SequenceRNAi molecule
394caagcaaugc gguaguacua uaucugg
2739527RNAArtificial SequenceRNAi molecule 395auucuucucc uucucagccu
caaggac 2739627RNAArtificial
SequenceRNAi molecule 396auuacucucc acaucaucac ugucauu
2739727RNAArtificial SequenceRNAi molecule
397ggaugcugau gaucucaucc aucaauu
2739827RNAArtificial SequenceRNAi molecule 398agauucaggu aacaaggucc
aaacguu 2739927RNAArtificial
SequenceRNAi molecule 399aacguuggaa caaagccuac cucuguu
2740027RNAArtificial SequenceRNAi molecule
400agauccugcc ucuguaggca acuccuu
2740127RNAArtificial SequenceRNAi molecule 401cucaagcuuu uuaucuggug
gugucuu 2740227RNAArtificial
SequenceRNAi molecule 402aucauaaaca aauccaacau caaucuu
2740327RNAArtificial SequenceRNAi molecule
403uagauauguu guuccaacua caucauu
2740427RNAArtificial SequenceRNAi molecule 404uucuuaucug cauugccucc
aaauauu 2740527RNAArtificial
SequenceRNAi molecule 405gugucuucuc aagaaaagug gcuaauu
2740627RNAArtificial SequenceRNAi molecule
406cuugaucuga agauugacga ccugauu
2740727RNAArtificial SequenceRNAi molecule 407aagccuaccu cuguuucucc
uguguuu 2740827RNAArtificial
SequenceRNAi molecule 408auccacgaga uuuuucuuau cugcauu
2740927RNAArtificial SequenceRNAi molecule
409aacuucuaca aaaggaucca cgagauu
2741027RNAArtificial SequenceRNAi molecule 410uucucaacaa ccagcagguc
aucauuu 2741127RNAArtificial
SequenceRNAi molecule 411uuucucaaca accagcaggu caucauu
2741227RNAArtificial SequenceRNAi molecule
412aaacaaaucc aacaucaauc uuaaauu
2741327RNAArtificial SequenceRNAi molecule 413auuuuagaga gguguagaua
uguuguu 2741427RNAArtificial
SequenceRNAi molecule 414acuuucucau gacagcaugg ccagguu
2741527RNAArtificial SequenceRNAi molecule
415cugaagauug acgaccugau uccacuc
2741627RNAArtificial SequenceRNAi molecule 416acucuccaca ucaucacugu
cauuauc 2741727RNAArtificial
SequenceRNAi molecule 417uaauucaacc aagauccugc cucugua
2741827RNAArtificial SequenceRNAi molecule
418ucacugucau uaucacgauc ucgucuc
2741927RNAArtificial SequenceRNAi molecule 419caucacuguc auuaucacga
ucucguc 2742027RNAArtificial
SequenceRNAi molecule 420gaagauugac gaccugauuc cacucug
2742127RNAArtificial SequenceRNAi molecule
421ugaagauuga cgaccugauu ccacucu
2742227RNAArtificial SequenceRNAi molecule 422ucugaagauu gacgaccuga
uuccacu 2742327RNAArtificial
SequenceRNAi molecule 423aaguggcuaa uucaaccaag auccugc
2742427RNAArtificial SequenceRNAi molecule
424aucacuguca uuaucacgau cucgucu
2742527RNAArtificial SequenceRNAi molecule 425ucaucacugu cauuaucacg
aucucgu 2742627RNAArtificial
SequenceRNAi molecule 426ccacaucauc acugucauua ucacgau
2742727RNAArtificial SequenceRNAi molecule
427uccacaucau cacugucauu aucacga
2742827RNAArtificial SequenceRNAi molecule 428ucuccacauc aucacuguca
uuaucac 2742927RNAArtificial
SequenceRNAi molecule 429cucuccacau caucacuguc auuauca
2743027RNAArtificial SequenceRNAi molecule
430cuccacauca ucacugucau uaucacg
2743127RNAArtificial SequenceRNAi molecule 431aucugaagau ugacgaccug
auuccac 2743227RNAArtificial
SequenceRNAi molecule 432cuaauucaac caagauccug ccucugu
2743327RNAArtificial SequenceRNAi molecule
433gucauuauca cgaucucguc ucucagg
2743427RNAArtificial SequenceRNAi molecule 434aagauugacg accugauucc
acucugg 2743527RNAArtificial
SequenceRNAi molecule 435acaucaucac ugucauuauc acgaucu
2743627RNAArtificial SequenceRNAi molecule
436uacucuccac aucaucacug ucauuau
2743727RNAArtificial SequenceRNAi molecule 437aauuacucuc cacaucauca
cugucau 2743827RNAArtificial
SequenceRNAi molecule 438aucaucacug ucauuaucac gaucucg
2743927RNAArtificial SequenceRNAi molecule
439ucauuaucac gaucucgucu cucagga
2744027RNAArtificial SequenceRNAi molecule 440ugucauuauc acgaucucgu
cucucag 2744127RNAArtificial
SequenceRNAi molecule 441cugucauuau cacgaucucg ucucuca
2744227RNAArtificial SequenceRNAi molecule
442cacugucauu aucacgaucu cgucucu
2744327RNAArtificial SequenceRNAi molecule 443aauucaacca agauccugcc
ucuguag 2744427RNAArtificial
SequenceRNAi molecule 444uagagaggug uagauauguu guuccaa
2744527RNAArtificial SequenceRNAi molecule
445uuagagaggu guagauaugu uguucca
2744627RNAArtificial SequenceRNAi molecule 446cacuugccaa gagaucguug
uaacauu 2744727RNAArtificial
SequenceRNAi molecule 447cugaucauac acgagccacu gcugauu
2744827RNAArtificial SequenceRNAi molecule
448uugaagauaa ccuucugauu caggcuu
2744927RNAArtificial SequenceRNAi molecule 449uuacaagcaa uugaugcugc
acauguu 2745027RNAArtificial
SequenceRNAi molecule 450ggagcuccuu aagaauuaca agcaauu
2745127RNAArtificial SequenceRNAi molecule
451cggaucucuu cuucucuucu ucaaguu
2745227RNAArtificial SequenceRNAi molecule 452cuucucucgu ugucucuucc
agcuguu 2745327RNAArtificial
SequenceRNAi molecule 453ucugcuucuc uucuugaaga uaaccuu
2745427RNAArtificial SequenceRNAi molecule
454gaucauacac gagccacugc ugauuuu
2745527RNAArtificial SequenceRNAi molecule 455uucgugaggu ugcagcagac
aacuguu 2745627RNAArtificial
SequenceRNAi molecule 456gaugcugcac auguugacgg ucgaguu
2745727RNAArtificial SequenceRNAi molecule
457acuugccaag agaucguugu aacauuu
2745827RNAArtificial SequenceRNAi molecule 458agauaagagc ucuucggauc
ucuucuu 2745927RNAArtificial
SequenceRNAi molecule 459cuaaaguaca ugccugcauc uguuguu
2746027RNAArtificial SequenceRNAi molecule
460agucuaaagu acaugccugc aucuguu
2746127RNAArtificial SequenceRNAi molecule 461ugaucauaca cgagccacug
cugauuu 2746227RNAArtificial
SequenceRNAi molecule 462cugagauaag agcucuucgg aucucuu
2746327RNAArtificial SequenceRNAi molecule
463gugagguugc agcagacaac uguuguu
2746427RNAArtificial SequenceRNAi molecule 464uuauuuauug augaguugaa
gcaguuu 2746527RNAArtificial
SequenceRNAi molecule 465auuauuuauu gaugaguuga agcaguu
2746627RNAArtificial SequenceRNAi molecule
466ucucuucuug aagauaaccu ucugauu
2746727RNAArtificial SequenceRNAi molecule 467ucaaccucaa gaucuuuuuu
ugcacuu 2746827RNAArtificial
SequenceRNAi molecule 468ugucguucaa ccucaagauc uuuuuuu
2746927RNAArtificial SequenceRNAi molecule
469uugucguuca accucaagau cuuuuuu
2747027RNAArtificial SequenceRNAi molecule 470uuugucguuc aaccucaaga
ucuuuuu 2747127RNAArtificial
SequenceRNAi molecule 471aguacaugcc ugcaucuguu guuccaa
2747227RNAArtificial SequenceRNAi molecule
472ucggagcucc uuaagaauua caagcaa
2747327RNAArtificial SequenceRNAi molecule 473gcacuugcca agagaucguu
guaacau 2747427RNAArtificial
SequenceRNAi molecule 474ugcacuugcc aagagaucgu uguaaca
2747527RNAArtificial SequenceRNAi molecule
475uugcacuugc caagagaucg uuguaac
2747627RNAArtificial SequenceRNAi molecule 476aaguacaugc cugcaucugu
uguucca 2747727RNAArtificial
SequenceRNAi molecule 477aagugacuaa uggcucugug auggcaa
2747827RNAArtificial SequenceRNAi molecule
478guacaugccu gcaucuguug uuccaac
2747927RNAArtificial SequenceRNAi molecule 479gcugaucaua cacgagccac
ugcugau 2748027RNAArtificial
SequenceRNAi molecule 480ugcugaucau acacgagcca cugcuga
2748127RNAArtificial SequenceRNAi molecule
481uccuuaagaa uuacaagcaa uugaugc
2748227RNAArtificial SequenceRNAi molecule 482gcuccuuaag aauuacaagc
aauugau 2748327RNAArtificial
SequenceRNAi molecule 483agcuccuuaa gaauuacaag caauuga
2748427RNAArtificial SequenceRNAi molecule
484cuugaagaua accuucugau ucaggcu
2748527RNAArtificial SequenceRNAi molecule 485ucggaucucu ucuucucuuc
uucaagu 2748627RNAArtificial
SequenceRNAi molecule 486uucggaucuc uucuucucuu cuucaag
2748727RNAArtificial SequenceRNAi molecule
487cuucggaucu cuucuucucu ucuucaa
2748827RNAArtificial SequenceRNAi molecule 488acaagcaauu gaugcugcac
auguuga 2748927RNAArtificial
SequenceRNAi molecule 489uucggagcuc cuuaagaauu acaagca
2749027RNAArtificial SequenceRNAi molecule
490aagcaaugcg guaguacuau aucuggc
2749127RNAArtificial SequenceRNAi molecule 491caagcaaugc gguaguacua
uaucugg 2749227RNAArtificial
SequenceRNAi molecule 492aagcaauuga ugcugcacau guugacg
2749327RNAArtificial SequenceRNAi molecule
493caagcaauug augcugcaca uguugac
2749427RNAArtificial SequenceRNAi molecule 494ucucguuguc ucuuccagcu
guucaag 2749527RNAArtificial
SequenceRNAi molecule 495cucucguugu cucuuccagc uguucaa
2749627RNAArtificial SequenceRNAi molecule
496ucuaagaacc uggaucuccu gacuguu
2749727RNAArtificial SequenceRNAi molecule 497cuccgcaagc uguauauaga
gccaauu 2749827RNAArtificial
SequenceRNAi molecule 498cucuccauca gucaccacaa uggccuu
2749927RNAArtificial SequenceRNAi molecule
499ucaucauauu cagaaccucu uacucuu
2750027RNAArtificial SequenceRNAi molecule 500aucaucauug aaugugcaau
acugguu 2750127RNAArtificial
SequenceRNAi molecule 501cuugaugaca ucuucuggcc augcauu
2750227RNAArtificial SequenceRNAi molecule
502ccacauccag aaugacaggc agacauu
2750327RNAArtificial SequenceRNAi molecule 503ucaccacaau ggccuugaug
acaucuu 2750427RNAArtificial
SequenceRNAi molecule 504caugaauguu caauugcugu cucucuu
2750527RNAArtificial SequenceRNAi molecule
505aaugacaggc agacauucuu gaggauu
2750627RNAArtificial SequenceRNAi molecule 506guucaggaga cgaaaugcau
ucacauu 2750727RNAArtificial
SequenceRNAi molecule 507gccguagucc aauguagagu ggaucuu
2750827RNAArtificial SequenceRNAi molecule
508agaccugcaa cugcaacaga ugcuguu
2750927RNAArtificial SequenceRNAi molecule 509guggcaacaa uccaugaaug
uucaauu 2751027RNAArtificial
SequenceRNAi molecule 510uccgcaagcu guauauagag ccaauuu
2751127RNAArtificial SequenceRNAi molecule
511ggaagguggc aacaauccau gaauguu
2751227RNAArtificial SequenceRNAi molecule 512aaaaaaucau cauauucaga
accucuu 2751327RNAArtificial
SequenceRNAi molecule 513ugaauucguc caaaaaauca ucauauu
2751427RNAArtificial SequenceRNAi molecule
514ucuuuaagua acuccucauu uucgguu
2751527RNAArtificial SequenceRNAi molecule 515guggaucuuu aaguaacucc
ucauuuu 2751627RNAArtificial
SequenceRNAi molecule 516aguggaucuu uaaguaacuc cucauuu
2751727RNAArtificial SequenceRNAi molecule
517ucaucauuga augugcaaua cugguuu
2751827RNAArtificial SequenceRNAi molecule 518cugaauaagg caauucaugc
cauacuu 2751927RNAArtificial
SequenceRNAi molecule 519gagaagauac cugucaaagu cagaguu
2752027RNAArtificial SequenceRNAi molecule
520cauccagaau gacaggcaga cauucuu
2752127RNAArtificial SequenceRNAi molecule 521aagaaccugg aucuccugac
uguugaa 2752227RNAArtificial
SequenceRNAi molecule 522uaagaaccug gaucuccuga cuguuga
2752327RNAArtificial SequenceRNAi molecule
523cucuaagaac cuggaucucc ugacugu
2752427RNAArtificial SequenceRNAi molecule 524agauccauua agagaagaua
ccuguca 2752527RNAArtificial
SequenceRNAi molecule 525ucaaugucag augucagcac ucuauaa
2752627RNAArtificial SequenceRNAi molecule
526uuacuacucu aagaaccugg aucuccu
2752727RNAArtificial SequenceRNAi molecule 527ucucaauguc agaugucagc
acucuau 2752827RNAArtificial
SequenceRNAi molecule 528augcauugag aacugaagca auaugcc
2752927RNAArtificial SequenceRNAi molecule
529uauucagaac cucuuacucu ucucugc
2753027RNAArtificial SequenceRNAi molecule 530uacucuaaga accuggaucu
ccugacu 2753127RNAArtificial
SequenceRNAi molecule 531aauacgcucu ccaucaguca ccacaau
2753227RNAArtificial SequenceRNAi molecule
532auucagaacc ucuuacucuu cucugcc
2753327RNAArtificial SequenceRNAi molecule 533cuacucuaag aaccuggauc
uccugac 2753427RNAArtificial
SequenceRNAi molecule 534ucuggccaug cauugagaac ugaagca
2753527RNAArtificial SequenceRNAi molecule
535gaauacgcuc uccaucaguc accacaa
2753627RNAArtificial SequenceRNAi molecule 536ccuccgcaag cuguauauag
agccaau 2753727RNAArtificial
SequenceRNAi molecule 537acucuucucu gccguagucc aauguag
2753827RNAArtificial SequenceRNAi molecule
538aucauauuca gaaccucuua cucuucu
2753927RNAArtificial SequenceRNAi molecule 539uaucaucauu gaaugugcaa
uacuggu 2754027RNAArtificial
SequenceRNAi molecule 540auaucaucau ugaaugugca auacugg
2754127RNAArtificial SequenceRNAi molecule
541uccuugaaua ucaucauuga augugca
2754227RNAArtificial SequenceRNAi molecule 542uuccuugaau aucaucauug
aaugugc 2754327RNAArtificial
SequenceRNAi molecule 543gauccauuaa gagaagauac cugucaa
2754427RNAArtificial SequenceRNAi molecule
544aauguucaau ugcugucucu cuuccag
2754527RNAArtificial SequenceRNAi molecule 545gaauguucaa uugcugucuc
ucuucca 2754627RNAArtificial
SequenceRNAi molecule 546agagaacucc acggugaacu cugacuu
2754727RNAArtificial SequenceRNAi molecule
547gacaucugug augaugaugg ccaaguu
2754827RNAArtificial SequenceRNAi molecule 548guagauguug gugcuguaag
gcagguu 2754927RNAArtificial
SequenceRNAi molecule 549ccuggucuug ucuugaucug uggcguu
2755027RNAArtificial SequenceRNAi molecule
550cagcagguau guaucaaaga agugguu
2755127RNAArtificial SequenceRNAi molecule 551agaaugcucg uagauguugg
ugcugua 2755227RNAArtificial
SequenceRNAi molecule 552aacuccacgg ugaacucuga cuugguc
2755327RNAArtificial SequenceRNAi molecule
553gagaacucca cggugaacuc ugacuug
2755427RNAArtificial SequenceRNAi molecule 554uugucuugau cuguggcguu
gaccgug 2755527RNAArtificial
SequenceRNAi molecule 555ggaggagaau gcucguagau guuggug
2755627RNAArtificial SequenceRNAi molecule
556cuggucuugu cuugaucugu ggcguug
2755727RNAArtificial SequenceRNAi molecule 557ggagaaugcu cguagauguu
ggugcug 2755827RNAArtificial
SequenceRNAi molecule 558uccauguccu ggacaucugu gaugaug
2755927RNAArtificial SequenceRNAi molecule
559auucaagguc agcacuccgc ugaugua
2756027RNAArtificial SequenceRNAi molecule 560guccucgcug aucagcaggu
auguauc 2756127RNAArtificial
SequenceRNAi molecule 561guguccucgc ugaucagcag guaugua
2756227RNAArtificial SequenceRNAi molecule
562uucacaguca ggaugaagcc auggcug
2756327RNAArtificial SequenceRNAi molecule 563acaucuguga ugaugauggc
caaguug 2756427RNAArtificial
SequenceRNAi molecule 564auguccugga caucugugau gaugaug
2756527RNAArtificial SequenceRNAi molecule
565gugcuguaag gcagguugau gaagaug
2756627RNAArtificial SequenceRNAi molecule 566auguuggugc uguaaggcag
guugaug 2756727RNAArtificial
SequenceRNAi molecule 567uagauguugg ugcuguaagg cagguug
2756827RNAArtificial SequenceRNAi molecule
568ugacagagaa cuccacggug aacucug
2756927RNAArtificial SequenceRNAi molecule 569accuggaugu ucaccuuccg
ugugauc 2757027RNAArtificial
SequenceRNAi molecule 570cacagucagg augaagccau ggcugua
2757127RNAArtificial SequenceRNAi molecule
571agaacuccac ggugaacucu gacuugg
2757227RNAArtificial SequenceRNAi molecule 572aaugcucgua gauguuggug
cuguaag 2757327RNAArtificial
SequenceRNAi molecule 573gaaugcucgu agauguuggu gcuguaa
2757427RNAArtificial SequenceRNAi molecule
574augcucguag auguuggugc uguaagg
2757527RNAArtificial SequenceRNAi molecule 575gaacuccacg gugaacucug
acuuggu 2757627RNAArtificial
SequenceRNAi molecule 576ugucuugauc uguggcguug accguga
2757727RNAArtificial SequenceRNAi molecule
577cuugucuuga ucuguggcgu ugaccgu
2757827RNAArtificial SequenceRNAi molecule 578ucuugucuug aucuguggcg
uugaccg 2757927RNAArtificial
SequenceRNAi molecule 579gaggagaaug cucguagaug uuggugc
2758027RNAArtificial SequenceRNAi molecule
580cggaggagaa ugcucguaga uguuggu
2758127RNAArtificial SequenceRNAi molecule 581gagaaugcuc guagauguug
gugcugu 2758227RNAArtificial
SequenceRNAi molecule 582aggagaaugc ucguagaugu uggugcu
2758327RNAArtificial SequenceRNAi molecule
583ggucuugucu ugaucugugg cguugac
2758427RNAArtificial SequenceRNAi molecule 584ugcucguaga uguuggugcu
guaaggc 2758527RNAArtificial
SequenceRNAi molecule 585cauguccugg acaucuguga ugaugau
2758627RNAArtificial SequenceRNAi molecule
586ccucgcugau cagcagguau guaucaa
2758727RNAArtificial SequenceRNAi molecule 587uccucgcuga ucagcaggua
uguauca 2758827RNAArtificial
SequenceRNAi molecule 588uguccucgcu gaucagcagg uauguau
2758927RNAArtificial SequenceRNAi molecule
589aacucugacu uggucucucu guccagu
2759027RNAArtificial SequenceRNAi molecule 590uggucuuguc uugaucugug
gcguuga 2759127RNAArtificial
SequenceRNAi molecule 591cuggacaucu gugaugauga uggccaa
2759227RNAArtificial SequenceRNAi molecule
592ccauguccug gacaucugug augauga
2759327RNAArtificial SequenceRNAi molecule 593guccaugucc uggacaucug
ugaugau 2759427RNAArtificial
SequenceRNAi molecule 594gaacucugac uuggucucuc uguccag
2759527RNAArtificial SequenceRNAi molecule
595acuccacggu gaacucugac uuggucu
2759627RNAArtificial SequenceRNAi molecule 596uguguuagaa cuccucuugc
cuauguu 2759727RNAArtificial
SequenceRNAi molecule 597uguacgaaau guguuagaac uccucuu
2759827RNAArtificial SequenceRNAi molecule
598caugguuccu gccaagcacc auuccuu
2759927RNAArtificial SequenceRNAi molecule 599ucacacauaa uugugcugag
uggaguu 2760027RNAArtificial
SequenceRNAi molecule 600gaaccaaagu auaaaaggau ucuacuu
2760127RNAArtificial SequenceRNAi molecule
601uacaauuuuu cagcuucaca cauaauu
2760227RNAArtificial SequenceRNAi molecule 602aaaaaggaac caaaguauaa
aaggauu 2760327RNAArtificial
SequenceRNAi molecule 603guguuagaac uccucuugcc uauguua
2760427RNAArtificial SequenceRNAi molecule
604aauguguuag aacuccucuu gccuaug
2760527RNAArtificial SequenceRNAi molecule 605gaaauguguu agaacuccuc
uugccua 2760627RNAArtificial
SequenceRNAi molecule 606acugguucug cagcucugga auggaug
2760727RNAArtificial SequenceRNAi molecule
607guacgaaaug uguuagaacu ccucuug
2760827RNAArtificial SequenceRNAi molecule 608augguuccug ccaagcacca
uuccuuc 2760927RNAArtificial
SequenceRNAi molecule 609ccaaaguaua aaaggauucu acuucua
2761027RNAArtificial SequenceRNAi molecule
610aaccaaagua uaaaaggauu cuacuuc
2761127RNAArtificial SequenceRNAi molecule 611agaacuccuc uugccuaugu
uaaaaug 2761227RNAArtificial
SequenceRNAi molecule 612cagcuucaca cauaauugug cugagug
2761327RNAArtificial SequenceRNAi molecule
613ugguucugca gcucuggaau ggaugug
2761427RNAArtificial SequenceRNAi molecule 614cucuacaauu uuucagcuuc
acacaua 2761527RNAArtificial
SequenceRNAi molecule 615ccucuugccu auguuaaaau gugaaug
2761627RNAArtificial SequenceRNAi molecule
616aacuccucuu gccuauguua aaaugug
2761727RNAArtificial SequenceRNAi molecule 617cacagaaucu ugcagaggcc
uccagug 2761827RNAArtificial
SequenceRNAi molecule 618aauuuuucag cuucacacau aauugug
2761927RNAArtificial SequenceRNAi molecule
619acaauuuuuc agcuucacac auaauug
2762027RNAArtificial SequenceRNAi molecule 620aaaaggaacc aaaguauaaa
aggauuc 2762127RNAArtificial
SequenceRNAi molecule 621auguguuaga acuccucuug ccuaugu
2762227RNAArtificial SequenceRNAi molecule
622ccugaaucag uuagagcucc acgaagg
2762327RNAArtificial SequenceRNAi molecule 623uguuagaacu ccucuugccu
auguuaa 2762427RNAArtificial
SequenceRNAi molecule 624uacgaaaugu guuagaacuc cucuugc
2762527RNAArtificial SequenceRNAi molecule
625cgaaaugugu uagaacuccu cuugccu
2762627RNAArtificial SequenceRNAi molecule 626acgaaaugug uuagaacucc
ucuugcc 2762727RNAArtificial
SequenceRNAi molecule 627gacugguucu gcagcucugg aauggau
2762827RNAArtificial SequenceRNAi molecule
628uuguacgaaa uguguuagaa cuccucu
2762927RNAArtificial SequenceRNAi molecule 629aauugugcug aguggaguuu
ugacaac 2763027RNAArtificial
SequenceRNAi molecule 630ucagcuucac acauaauugu gcugagu
2763127RNAArtificial SequenceRNAi molecule
631uucagcuuca cacauaauug ugcugag
2763227RNAArtificial SequenceRNAi molecule 632auugugcuga guggaguuuu
gacaacc 2763327RNAArtificial
SequenceRNAi molecule 633ccuagucaug gcuaguucau ccugugg
2763427RNAArtificial SequenceRNAi molecule
634cugguucugc agcucuggaa uggaugu
2763527RNAArtificial SequenceRNAi molecule 635aaaguauaaa aggauucuac
uucuacc 2763627RNAArtificial
SequenceRNAi molecule 636caaaguauaa aaggauucua cuucuac
2763727RNAArtificial SequenceRNAi molecule
637accaaaguau aaaaggauuc uacuucu
2763827RNAArtificial SequenceRNAi molecule 638uagaacuccu cuugccuaug
uuaaaau 2763927RNAArtificial
SequenceRNAi molecule 639uuagaacucc ucuugccuau guuaaaa
2764027RNAArtificial SequenceRNAi molecule
640acuccucuug ccuauguuaa aauguga
2764127RNAArtificial SequenceRNAi molecule 641gaacuccucu ugccuauguu
aaaaugu 2764227RNAArtificial
SequenceRNAi molecule 642guuagaacuc cucuugccua uguuaaa
2764327RNAArtificial SequenceRNAi molecule
643aaauguguua gaacuccucu ugccuau
2764427RNAArtificial SequenceRNAi molecule 644uaauugugcu gaguggaguu
uugacaa 2764527RNAArtificial
SequenceRNAi molecule 645auaauugugc ugaguggagu uuugaca
2764627RNAArtificial SequenceRNAi molecule
646uuguuggcca ucaugugacu ucgaauu
2764727RNAArtificial SequenceRNAi molecule 647ucauugcgga uguuaugcuc
aauuauu 2764827RNAArtificial
SequenceRNAi molecule 648uagaacucgc uuguagaugg cugaauu
2764927RNAArtificial SequenceRNAi molecule
649cauuccggaa caucagcuuc augucuu
2765027RNAArtificial SequenceRNAi molecule 650uaacuucucc aggauaugug
caucauu 2765127RNAArtificial
SequenceRNAi molecule 651aguccucaac cauagaguca auaucuu
2765227RNAArtificial SequenceRNAi molecule
652aacaucagcu ucaugucuuc uaucauu
2765327RNAArtificial SequenceRNAi molecule 653cauagaguca auaucuuggu
acuuguu 2765427RNAArtificial
SequenceRNAi molecule 654uucaagucca uuggcuccaa gaugauu
2765527RNAArtificial SequenceRNAi molecule
655uggcucucga gcuucaagaa caacauu
2765627RNAArtificial SequenceRNAi molecule 656cgauaucguc ucuccuggca
agcucuu 2765727RNAArtificial
SequenceRNAi molecule 657gcuucaagaa caacauugaa uaagauu
2765827RNAArtificial SequenceRNAi molecule
658guuggccauc augugacuuc gaauuuu
2765927RNAArtificial SequenceRNAi molecule 659uguuggccau caugugacuu
cgaauuu 2766027RNAArtificial
SequenceRNAi molecule 660agaaaugcca cucuuccuac ucagcuu
2766127RNAArtificial SequenceRNAi molecule
661ugguacuugu uggccaucau gugacuu
2766227RNAArtificial SequenceRNAi molecule 662aauaagauuu ucauucgcug
cuuucuu 2766327RNAArtificial
SequenceRNAi molecule 663uacagcuuca uagaccucau uuaguuu
2766427RNAArtificial SequenceRNAi molecule
664uucuuuacag cuucauagac cucauuu
2766527RNAArtificial SequenceRNAi molecule 665uugucauugc ggauguuaug
cucaauu 2766627RNAArtificial
SequenceRNAi molecule 666uagaccucau uuaguuucug cugcauu
2766727RNAArtificial SequenceRNAi molecule
667guucuuuaca gcuucauaga ccucauu
2766827RNAArtificial SequenceRNAi molecule 668uggccaucau gugacuucga
auuuuuu 2766927RNAArtificial
SequenceRNAi molecule 669uuggccauca ugugacuucg aauuuuu
2767027RNAArtificial SequenceRNAi molecule
670gcucuuucuu cuuugccugc auaacuu
2767127RNAArtificial SequenceRNAi molecule 671uugaguaacu ucuccaggau
augugca 2767227RNAArtificial
SequenceRNAi molecule 672cuugaguaac uucuccagga uaugugc
2767327RNAArtificial SequenceRNAi molecule
673cuuguuggcc aucaugugac uucgaau
2767427RNAArtificial SequenceRNAi molecule 674acuuguuggc caucauguga
cuucgaa 2767527RNAArtificial
SequenceRNAi molecule 675uacuuguugg ccaucaugug acuucga
2767627RNAArtificial SequenceRNAi molecule
676agaucaugcu gucuccgucc ucgauau
2767727RNAArtificial SequenceRNAi molecule 677gcauuccgga acaucagcuu
caugucu 2767827RNAArtificial
SequenceRNAi molecule 678uggcauuccg gaacaucagc uucaugu
2767927RNAArtificial SequenceRNAi molecule
679aaugccacuc uuccuacuca gcuugag
2768027RNAArtificial SequenceRNAi molecule 680augcugucuc cguccucgau
aucgucu 2768127RNAArtificial
SequenceRNAi molecule 681ucaugcuguc uccguccucg auaucgu
2768227RNAArtificial SequenceRNAi molecule
682aucaugcugu cuccguccuc gauaucg
2768327RNAArtificial SequenceRNAi molecule 683ggagaagcca ugucaucauc
aucaggc 2768427RNAArtificial
SequenceRNAi molecule 684gaacaucagc uucaugucuu cuaucau
2768527RNAArtificial SequenceRNAi molecule
685uuagaacucg cuuguagaug gcugaau
2768627RNAArtificial SequenceRNAi molecule 686ggaacaucag cuucaugucu
ucuauca 2768727RNAArtificial
SequenceRNAi molecule 687guaacuucuc caggauaugu gcaucau
2768827RNAArtificial SequenceRNAi molecule
688aguaacuucu ccaggauaug ugcauca
2768927RNAArtificial SequenceRNAi molecule 689ugaguaacuu cuccaggaua
ugugcau 2769027RNAArtificial
SequenceRNAi molecule 690auaguaguca ggcaacucag aucuaga
2769127RNAArtificial SequenceRNAi molecule
691ccggaacauc agcuucaugu cuucuau
2769227RNAArtificial SequenceRNAi molecule 692uuccggaaca ucagcuucau
gucuucu 2769327RNAArtificial
SequenceRNAi molecule 693uaguagucag gcaacucaga ucuagag
2769427RNAArtificial SequenceRNAi molecule
694gauaguaguc aggcaacuca gaucuag
2769527RNAArtificial SequenceRNAi molecule 695guacuuguug gccaucaugu
gacuucg 2769627RNAArtificial
SequenceRNAi molecule 696ugaccagcau caucagauca augaucu
2769727RNAArtificial SequenceRNAi molecule
697cauggacuuc accuucuuca ccaccuu
2769827RNAArtificial SequenceRNAi molecule 698gaacaucugc auggacuuca
ccuucuu 2769927RNAArtificial
SequenceRNAi molecule 699acuguaaugu ggaacuuggc cuugguu
2770027RNAArtificial SequenceRNAi molecule
700aaucggugca ccucggaacu ugguguu
2770127RNAArtificial SequenceRNAi molecule 701uauuuuguuc agcaccacga
ccagcuu 2770227RNAArtificial
SequenceRNAi molecule 702uaucaauugc ugccugucuc uuuccuu
2770327RNAArtificial SequenceRNAi molecule
703guggaacauc ugcauggacu ucaccuu
2770427RNAArtificial SequenceRNAi molecule 704aggcaaucug gccgaucaca
aggcauu 2770527RNAArtificial
SequenceRNAi molecule 705uccuucaggu aagaggucua uuuuguu
2770627RNAArtificial SequenceRNAi molecule
706cuuuccuuca gguaagaggu cuauuuu
2770727RNAArtificial SequenceRNAi molecule 707cauuuuauca auugcugccu
gucucuu 2770827RNAArtificial
SequenceRNAi molecule 708ggucuucugc auuuucuugg ucauuuu
2770927RNAArtificial SequenceRNAi molecule
709guccaguaua ggcuccuggu caaaguu
2771027RNAArtificial SequenceRNAi molecule 710auuuuaucaa uugcugccug
ucucuuu 2771127RNAArtificial
SequenceRNAi molecule 711cucuuuccuu cagguaagag gucuauu
2771227RNAArtificial SequenceRNAi molecule
712cuguaaugug gaacuuggcc uugguuu
2771327RNAArtificial SequenceRNAi molecule 713auggacuuca ccuucuucac
caccuug 2771427RNAArtificial
SequenceRNAi molecule 714gguauaaucg gugcaccucg gaacuug
2771527RNAArtificial SequenceRNAi molecule
715uuaucuggag caggacugaa gaacauc
2771627RNAArtificial SequenceRNAi molecule 716uggaacaucu gcauggacuu
caccuuc 2771727RNAArtificial
SequenceRNAi molecule 717aacaucugca uggacuucac cuucuuc
2771827RNAArtificial SequenceRNAi molecule
718uuggucacau cgaugaccag caucauc
2771927RNAArtificial SequenceRNAi molecule 719uuuguucagc accacgacca
gcuucug 2772027RNAArtificial
SequenceRNAi molecule 720auaaucggug caccucggaa cuuggug
2772127RNAArtificial SequenceRNAi molecule
721aucgugcaga aguaggcauu ccuuccu
2772227RNAArtificial SequenceRNAi molecule 722cugaaguccg aaguaauccu
ccucauu 2772327RNAArtificial
SequenceRNAi molecule 723ugcaucaaug aucaacugaa uuacauu
2772427RNAArtificial SequenceRNAi molecule
724uuggaucuga guaauauccu cuggcuu
2772527RNAArtificial SequenceRNAi molecule 725gaaggauaau cauaauaaug
gcucauu 2772627RNAArtificial
SequenceRNAi molecule 726gaucaacuga auuacauugc uagaauu
2772727RNAArtificial SequenceRNAi molecule
727ugcagauaau guuccuacug cugacuu
2772827RNAArtificial SequenceRNAi molecule 728ugugcuaaug uaaggcauca
cagucuu 2772927RNAArtificial
SequenceRNAi molecule 729gcuccuugua aacaggcuga aauucuu
2773027RNAArtificial SequenceRNAi molecule
730ucaucacauc gugcagaagu aggcauu
2773127RNAArtificial SequenceRNAi molecule 731cugaguaaua uccucuggcu
ugagcuu 2773227RNAArtificial
SequenceRNAi molecule 732auaauggcuc auuguguaca uauuauu
2773327RNAArtificial SequenceRNAi molecule
733ucauucauca gaucuguucc aagacuu
2773427RNAArtificial SequenceRNAi molecule 734guccgaagua auccuccuca
uuucauu 2773527RNAArtificial
SequenceRNAi molecule 735ugaaguccga aguaauccuc cucauuu
2773627RNAArtificial SequenceRNAi molecule
736cuggcuugag cuucucugcu guuccuu
2773727RNAArtificial SequenceRNAi molecule 737uccucuggcu ugagcuucuc
ugcuguu 2773827RNAArtificial
SequenceRNAi molecule 738cauuccuucc uguaaaaaug uugaauu
2773927RNAArtificial SequenceRNAi molecule
739caacaaguuc auuaaauacu ucuccuu
2774027RNAArtificial SequenceRNAi molecule 740uuaaucgcaa aaccaacugc
ugugguu 2774127RNAArtificial
SequenceRNAi molecule 741cacaucgugc agaaguaggc auuccuu
2774227RNAArtificial SequenceRNAi molecule
742cuugcaugau ggcaucgaaa ccaccuu
2774327RNAArtificial SequenceRNAi molecule 743auaauaaugg cucauugugu
acauauu 2774427RNAArtificial
SequenceRNAi molecule 744ccuuuauuag uaagacugag cacauuu
2774527RNAArtificial SequenceRNAi molecule
745uccuuuauua guaagacuga gcacauu
2774627RNAArtificial SequenceRNAi molecule 746cauccugcuc augucacuca
auucauu 2774727RNAArtificial
SequenceRNAi molecule 747cucaauuaag ugguccuucu cauccuu
2774827RNAArtificial SequenceRNAi molecule
748aauuaagugg uccuucucau ccuuguu
2774927RNAArtificial SequenceRNAi molecule 749guauagucgc ucaauuaagu
gguccuu 2775027RNAArtificial
SequenceRNAi molecule 750cugaucucuc uguauagucg cucaauu
2775127RNAArtificial SequenceRNAi molecule
751gguacuccau cuugguucuu agcaguu
2775227RNAArtificial SequenceRNAi molecule 752guccuucuca uccuuguuca
caccauu 2775327RNAArtificial
SequenceRNAi molecule 753aaugagccgc uugaaguacu gcagguu
2775427RNAArtificial SequenceRNAi molecule
754aacuggaaaa aguuguucac gucacuu
2775527RNAArtificial SequenceRNAi molecule 755guacuccauc uugguucuua
gcaguuu 2775627RNAArtificial
SequenceRNAi molecule 756ggaguugaau acuguuugga agagguu
2775727RNAArtificial SequenceRNAi molecule
757uugguguggu acuccaucuu gguucuu
2775827RNAArtificial SequenceRNAi molecule 758uccagguagu caaacaucuc
cacuguu 2775927RNAArtificial
SequenceRNAi molecule 759gguugcugga gcgguagaac agaucuu
2776027RNAArtificial SequenceRNAi molecule
760ggcauccaug uccaugaggu cauccuu
2776127RNAArtificial SequenceRNAi molecule 761ugaauacugu uuggaagagg
uugaguu 2776227RNAArtificial
SequenceRNAi molecule 762acugccaaag augucaucaa acuuguu
2776327RNAArtificial SequenceRNAi molecule
763ugaacugcca aagaugucau caaacuu
2776427RNAArtificial SequenceRNAi molecule 764auccuuguuc acaccauuuu
gacuguu 2776527RNAArtificial
SequenceRNAi molecule 765gagcgguaga acagaucuuu caacuuu
2776627RNAArtificial SequenceRNAi molecule
766ccuucucauc cuuguucaca ccauuuu
2776727RNAArtificial SequenceRNAi molecule 767uccuucucau ccuuguucac
accauuu 2776827RNAArtificial
SequenceRNAi molecule 768agucuucaug uuuucuagcu gugccuu
2776927RNAArtificial SequenceRNAi molecule
769ggagcgguag aacagaucuu ucaacuu
2777027RNAArtificial SequenceRNAi molecule 770guaucucaga gaguccuuca
ggacguu 2777127RNAArtificial
SequenceRNAi molecule 771acauccugcu caugucacuc aauucau
2777227RNAArtificial SequenceRNAi molecule
772caauuaagug guccuucuca uccuugu
2777327RNAArtificial SequenceRNAi molecule 773ucucuguaua gucgcucaau
uaagugg 2777427RNAArtificial
SequenceRNAi molecule 774aagugguccu ucucauccuu guucaca
2777527RNAArtificial SequenceRNAi molecule
775gcucaauuaa gugguccuuc ucauccu
2777627RNAArtificial SequenceRNAi molecule 776gguugaguuc acacuccagg
uagucaa 2777727RNAArtificial
SequenceRNAi molecule 777agguugaguu cacacuccag guaguca
2777827RNAArtificial SequenceRNAi molecule
778cauguccaug aggucauccu ucucuag
2777927RNAArtificial SequenceRNAi molecule 779uuaagugguc cuucucaucc
uuguuca 2778027RNAArtificial
SequenceRNAi molecule 780auagucgcuc aauuaagugg uccuucu
2778127RNAArtificial SequenceRNAi molecule
781uguauagucg cucaauuaag ugguccu
2778227RNAArtificial SequenceRNAi molecule 782acugaucucu cuguauaguc
gcucaau 2778327RNAArtificial
SequenceRNAi molecule 783cacauccugc ucaugucacu caauuca
2778427RNAArtificial SequenceRNAi molecule
784ugguacucca ucuugguucu uagcagu
2778527RNAArtificial SequenceRNAi molecule 785uaaguggucc uucucauccu
uguucac 2778627RNAArtificial
SequenceRNAi molecule 786agucgcucaa uuaagugguc cuucuca
2778727RNAArtificial SequenceRNAi molecule
787uucuagcugu gccuucaauc cacugau
2778827RNAArtificial SequenceRNAi molecule 788ucugaaugag ccgcuugaag
uacugca 2778927RNAArtificial
SequenceRNAi molecule 789ggaucugaau gagccgcuug aaguacu
2779027RNAArtificial SequenceRNAi molecule
790gguccuucuc auccuuguuc acaccau
2779127RNAArtificial SequenceRNAi molecule 791ugguccuucu cauccuuguu
cacacca 2779227RNAArtificial
SequenceRNAi molecule 792agugguccuu cucauccuug uucacac
2779327RNAArtificial SequenceRNAi molecule
793cgcucaauua agugguccuu cucaucc
2779427RNAArtificial SequenceRNAi molecule 794ggaacacaug gcagaacuuc
cagcaga 2779527RNAArtificial
SequenceRNAi molecule 795ugaaugagcc gcuugaagua cugcagg
2779627RNAArtificial SequenceRNAi molecule
796cagcauagcg uccaacuugg ugucauu
2779727RNAArtificial SequenceRNAi molecule 797auucuucucc uucuccgugc
cgcaguu 2779827RNAArtificial
SequenceRNAi molecule 798acaugguguu gaaguccagg auggcuu
2779927RNAArtificial SequenceRNAi molecule
799gcucuccaug aucucagaca ugguguu
2780027RNAArtificial SequenceRNAi molecule 800guucagcucc uccuuaacga
ggucguu 2780127RNAArtificial
SequenceRNAi molecule 801ucaaucacau cuucuaaggu gacgauu
2780227RNAArtificial SequenceRNAi molecule
802gaaaaacuug gugaggaaga ugguguu
2780327RNAArtificial SequenceRNAi molecule 803aaauucuucc agcauagcgu
ccaacuu 2780427RNAArtificial
SequenceRNAi molecule 804auuugaugau uucuucaauc acaucuu
2780527RNAArtificial SequenceRNAi molecule
805gaugcgcuug gcguaauucu ucuccuu
2780627RNAArtificial SequenceRNAi molecule 806cacgauagcc aggugagauu
uaccuuu 2780727RNAArtificial
SequenceRNAi molecule 807gcacgauagc caggugagau uuaccuu
2780827RNAArtificial SequenceRNAi molecule
808gucgagcagg auggugagcg ugguguu
2780927RNAArtificial SequenceRNAi molecule 809uuggcguaau ucuucuccuu
cuccgug 2781027RNAArtificial
SequenceRNAi molecule 810aucucuccga agaugacgau accgaug
2781127RNAArtificial SequenceRNAi molecule
811ggcacgaucu cuccgaagau gacgaua
2781227RNAArtificial SequenceRNAi molecule 812aauucuucca gcauagcguc
caacuug 2781327RNAArtificial
SequenceRNAi molecule 813agcauagcgu ccaacuuggu gucauug
2781427RNAArtificial SequenceRNAi molecule
814uagccgcucu ccaugaucuc agacaug
2781527RNAArtificial SequenceRNAi molecule 815uuccagcaua gcguccaacu
ugguguc 2781627RNAArtificial
SequenceRNAi molecule 816ucuuccagca uagcguccaa cuuggug
2781727RNAArtificial SequenceRNAi molecule
817ucuccgaaga ugacgauacc gauggug
2781827RNAArtificial SequenceRNAi molecule 818gauguucagc uccuccuuaa
cgagguc 2781927RNAArtificial
SequenceRNAi molecule 819caugaucuca gacauggugu ugaaguc
2782027RNAArtificial SequenceRNAi molecule
820ccuuggauga uguucagcuc cuccuua
2782127RNAArtificial SequenceRNAi molecule 821cucuccgaag augacgauac
cgauggu 2782227RNAArtificial
SequenceRNAi molecule 822guagccgcuc uccaugaucu cagacau
2782327RNAArtificial SequenceRNAi molecule
823uguagccgcu cuccaugauc ucagaca
2782427RNAArtificial SequenceRNAi molecule 824gaucucuccg aagaugacga
uaccgau 2782527RNAArtificial
SequenceRNAi molecule 825gaugauguuc agcuccuccu uaacgag
2782627RNAArtificial SequenceRNAi molecule
826uggcguaauu cuucuccuuc uccgugc
2782727RNAArtificial SequenceRNAi molecule 827ucucuccgaa gaugacgaua
ccgaugg 2782827RNAArtificial
SequenceRNAi molecule 828cgaucucucc gaagaugacg auaccga
2782927RNAArtificial SequenceRNAi molecule
829acgaucucuc cgaagaugac gauaccg
2783027RNAArtificial SequenceRNAi molecule 830cacgaucucu ccgaagauga
cgauacc 2783127RNAArtificial
SequenceRNAi molecule 831gcacgaucuc uccgaagaug acgauac
2783227RNAArtificial SequenceRNAi molecule
832aacuugguga ggaagauggu guuggcc
2783327RNAArtificial SequenceRNAi molecule 833cauagcgucc aacuuggugu
cauugaa 2783427RNAArtificial
SequenceRNAi molecule 834cuuggcguaa uucuucuccu ucuccgu
2783527RNAArtificial SequenceRNAi molecule
835ucucagacau gguguugaag uccagga
2783627RNAArtificial SequenceRNAi molecule 836aucucagaca ugguguugaa
guccagg 2783727RNAArtificial
SequenceRNAi molecule 837gcauagcguc caacuuggug ucauuga
2783827RNAArtificial SequenceRNAi molecule
838uucuuccagc auagcgucca acuuggu
2783927RNAArtificial SequenceRNAi molecule 839auucuuccag cauagcgucc
aacuugg 2784027RNAArtificial
SequenceRNAi molecule 840aauucuucuc cuucuccgug ccgcagu
2784127RNAArtificial SequenceRNAi molecule
841uaauucuucu ccuucuccgu gccgcag
2784227RNAArtificial SequenceRNAi molecule 842guaauucuuc uccuucuccg
ugccgca 2784327RNAArtificial
SequenceRNAi molecule 843gcuuggcgua auucuucucc uucuccg
2784427RNAArtificial SequenceRNAi molecule
844ccagcauagc guccaacuug gugucau
2784527RNAArtificial SequenceRNAi molecule 845uccagcauag cguccaacuu
gguguca 27
User Contributions:
Comment about this patent or add new information about this topic: